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Markov Chains with Exponentially Small Transition 
Probabilities: First Exit Problem from a 
General Domain. II. The General Case 
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In this paper we consider aperiodic ergodic Markov chains with transition 
probabilities exponentially small in a large parameter ft. We extend to the 
general, not necessarily reversible case the analysis, started in part I of this 
work, of the first exit problem from a general domain Q containing many stable 
equilibria (attracting equilibrium points for the fl = oo dynamics). In particular 
we describe the tube of typical trajectories during the first excursion outside Q. 
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1, I N T R O D U C T I O N  

In this p a p e r  we extend to the general ,  no t  necessar i ly  reversible case the 
analysis,  s ta r ted  in ref. 11 for the reversible case, of  the typical  exit ing 
t ra jector ies  dur ing  the first excurs ion from a general  d o m a i n  Q. 

M o r e  precisely,  let {X~fl},=o.t .  2 .... be a family of  M a r k o v  chains  
defined on the finite s tate space S, wi th  t rans i t ion  p robab i l i t i e s  P~P>(x, y)  
depend ing  on a posi t ive p a r a m e t e r  fl and  satisfying the fol lowing condi -  
tions: 

1. Ergodicity condition: 

Vx, y ~ S 3n such tha t  Pr y)  > 0 

(where P~P)"(x, y)  is the n-s tep t rans i t ion  p robab i l i ty ) .  
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2. Proper O, ~: there exist a function 3(x ,y) ,  x, y e S ,  assuming 
values `40 = 0  <,41 < , 4 2  • ' ' "  < , 4 , , ,  for some positive integer n, with 
A,, < oo and a positive function y = y(p), with y ~ 0 as fl ---, oo, such that if 
x .i~ y and PCm(x, y) > O, then 

e x p { - ` 4 ( x , y ) f l - y f l }  <<.P~/~)(x,y)<~exp{--A(x,y)fl+~,fl} (1.1) 

We will denote by X,(x) the Markov chain at time t ~ N starting from 
x at time 0; we will omit everywhere the index fl, for notational simplicity. 

We will denote by P,. the probability distribution of the process 
starting from x at t = 0  and by E.,. the corresponding expectation. More- 
over, given any set of states Q c S, we will denote by rQ the first hitting 
time to Q: 

re  = min{t > O: X,~ Q} 1.2) 

For any set Q c S we will denote by QC_ S \ Q  the complement of Q. 
The aim of this paper is to provide a complete description of the 

typical behavior of the Markov chain X, up to the time rQ,, for any set 
Q c S, and for fl sufficiently large. 

We refer to ref. 11 for a general discussion of the problem. Here we 
want only to recall that the results obtained by Freidlin and Wentzell con- 
cern only the asymptotics for fl large of the first exit time rQ~ and of the 
first exit point X~e. The description of the tube of typical trajectories was 
given by Freidlin and Wentzell(5) only in the case of a domain Q com- 
pletely attracted by a unique stable equilibrium point. 

It turns out from the analysis of many particular models (see, for 
instance, refs. 7-10) that for general domains the typical escape involves the 
permanence of the process in suitable sets during suitable random times, 
exponentially diverging in ft. This sort of"temporal  entropy" is essential to 
provide an efficient mechanism of escape. 

In ref. 11, by exploiting reversibility, we were able to reduce the solu- 
tion of the problem to the analysis of the energy landscape. In particular, 
the decomposition of the space into special sets called "cycles," which play 
a crucial role in the theory, was simply obtained in terms of the energy. 

In the present paper, to study the general nonreversible case, in order 
to get the cycle decomposition, we are forced to use graphical methods like 
those introduced by Freidlin and WentzellJ 5) 

Our strategy will be to combine this graphical approach with an 
analysis in terms of increasing scales of time introduced in ref. 12. In that 
paper the long-time behavior of the chain X, was studied by constructing 
a sequence of renormalized Markov cha#~s X(, 1), X(, 2) ..... X(/) .... whose state 
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spaces S (t~, S 12) ..... S Ijl .... were composed by equilibrium points of increas- 
ing stability. These chains provide a rougher and rougher description of 
our stochastic evolution adapted to the analysis of phenomena taking place 
in increasing scales of time (exponential in fl). 

If S - - S  I~ is the original state space, then S ~]~ is just the set of stable 
equilibria for the original Markov chain X, = X~,~ XI, ]~ is suitably defined 
on S ~). The set S (2~ is the set of stable equilibria for XI, )~ and so on. In 
Section 2 we will recall all the necessary definitions given in ref. 12. In 
ref. 12 with this construction of renormalized chains, some results on the 
typical long-time behavior of the original chain X, were easily obtained. In 
fact to each exponentially long path of the chain X,, a short path of a chain 
X~, m was associated, with a suitable renormalization index N. 

However, a detailed description of the behavior of the original chain 
X, during each interval of time corresponding to each transition of the 
chain X cm was missing in ref. 12. 

This detailed description turns out to be strictly connected to the 
problem of the definition of the typical exiting tube. Indeed let N = N ( Q )  
be the level such that the ( N +  1)th renormalized Markov chain does not 
contain states inside Q: s{N+II( ''3 Q= ~ .  This means that the first excur- 
sion outside Q for the chain X~, N~ is a sort of "descent" along the drift. 

As we already sketched in ref. 11, a first rough approximation of the 
typical tube of escape from Q is given by the set of typical trajectories 
followed during the first excursion outside Q by the chain X~, m. 

There remains the question of "reading" the result in terms of the 
paths followed on the original scale of time by our original chain X,. 

This problem of analyzing the set of trajectories of the original chain 
X, corresponding to a given trajectory of the chain X~, N~ is solved in the 
present paper. As noted above, this not only will give a full characteriza- 
tion of the typical tube of trajectories followed by the original chain X, 
during the first excursion from Q; this paper completes the analysis intro- 
duced in ref. 12 based on the renormalization procedure. Namely, we will 
be able to associate to any state .'V N of S |NI a suitable set Q_,.NES, a sort 
of generalized cycle, representing the set where the original process X, 
typically remains in the interval of time corresponding to a jump of the 
chain X~, m. 

We will also analyze the typical "descent" to the "bottom" of a 
generalized basin of attraction of a stable equilibrium x'Ve st'V( In this case 
we can make a comparison with our previous results in the reversible case. 
The situation when analyzing the typical "ascent" against the drift is more 
complicated and, of course, in the nonreversible case typical ascents outside 
a generalized basin Q and typical descents to the bottom of Q are not 
related by time reversal. 
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It turns out that, similar to what happens in the reversible case, the 
typical descent to the bottom of a domain containing many attractors takes 
place in a way that can be considered as the natural generalization of the 
typical descent to the bottom x of a domain Q completely attracted by the 
unique stable equilibrium point x. The main difference is the following: in 
the completely attracted domain the system does not "hesitate" and it 
always follows the drift up to the arrival at x in a finite time, uniformly 
bounded in fl, whereas in a general, not completely attracted domain the 
process tries to follow the drift in finite times as far as possible but some- 
times it has to enter into suitable "permanence sets" Qi, waiting suitable 
random times Tg and then getting out from Qg through suitable optimal 
points. The fact that the permanence times T,. are close to the typical escape 
times from Q~ and that this escape takes place in the optimal way is the 
counterpart of the fact that in the completely attracted case the only per- 
manence sets are trivial in the sense that they reduce to single points and 
the way of getting out from these single points (after a unitary permanence 
time!) is optimal in the sense that it is along the drift. 

Problems in many respects similar to the ones studied in the present 
paper have been considered in the framework of the theory of simulated 
annealing. We refer to refs. 2, 3, 6, 1, and 14-16 for results connected to 
the tube of exit from a general domain. 

The paper is organized as follows. In Section 2 we recall the renor- 
malization procedure and extend previous results. In Section 3 we present 
the Freidlin-Wentzell (FW) graphical method by extending to a more 
general case their definition of cycles. In Section 4 we establish some useful 
properties of the cycles. In Section 5 we state and prove our main theorem, 
which determines typical trajectories of the original chain X, corresponding 
to a single step of the renormalized chain X~,NL Finally in Section 6 we use 
the results of previous sections to give a characterization of the tube of 
typical trajectories during the first excursion outside Q. 

2. THE R E N O R M A L I Z A T I O N  PROCEDURE 

In this section we recall the construction of the sequence of renor- 
malized chains introduced in ref. 12 and we prove some new results. 

Let ~ ( S ) -  {{ q~;} i~ N: ~b,.~ S} be the set of paths. Following the theory 
of large deviations developed in ref. 5, we define, for each t ~ N, a func- 
tional I[o,,] on ~(S)  associating to each path ~b ~ qs(S) the value 

t - I  

Ico,,](~)--- ~ d(~;, 4~,+,) (2.1) 
i = 0  
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where for x r  P ( x , y ) > 0 ,  the function A(x ,y )  has been defined in (1.1) 
and we set A ( x , x ) = 0  for each x E S  and A ( x , y ) = c c  if P(x , y )=O.  This 
functional is the cost function of  each path ~b; we briefly recall now the main 
results and the construct ion developed in ref. 12. 

Lemma 2.1. Let q~ be a given path starting from x at time O; then, 
for t ~ N, the following hold: 

(i) We have 

P,.(X~. = ~b.,. Vs e [0, t] ) ~< e-/to.nl*,~ + ~',P 

where 7 is the quant i ty  in t roduced in (1.1). 

(ii) If ~b is such that  ~b,.r for any s~  [0, t ] ,  then we have also 
a lower bound:  

P,.(X,. = ~b~. Vs e [0, t] ) >/e-zt~ 

(iii) For  any constant  I o > 0 ,  for any e > 0  sufficiently small (c~<AI), 
for any t < e ~a, and for any sufficiently large fl 

sup P.,-(I[o.,](Xs) >1 Io) ~ e - z't~ + ~p 
x 

where e --, 0 as fl --, co. 

By using the functional ILo.,](~b), an equivalence relation, denoted by 
4 ,  can be int roduced in the state space S: for each pair of states x, y we 
define 

V(x, y )  - inf IEo.,j(ck) (2.2) 
t ,  ,k: ,t,o = x ,  ,kr = y 

and we set 

x ~ y  iff V ( x , y ) = V ( y , x ) = 0  (2.37 

We denote by (x )_  the equivalence class of x, i.e., (x)~ --- { y e S :  

We say that  x is a stable state if and only if 

for any y + x, V(x, y) > 0 (2.4) 

i.e., if each path  leaving from (x)~  has a positive cost. We will denote  by 
M the set of stable states. 

It is immediate  to see that if the set M contains a state x, then it 
contains the whole equivalence class of  x, namely M =  ( x ) _ .  
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An immediate consequence of Lemma 2.1 is the following: 

L e m m a  2.2. (i) There exist constants T o ~ [ 0 , [ S [ ]  and f l o >0  
such that for any fl > flo and for any t > To 

sup P,.(rM > t) <~ a t '/r~ 
x e S  

where 0 < a = 1 - C r~ for some constant 0 < C <  1 and [ .  ] denotes the 
integer part. 

(ii) For any ~/> 0 and for any t >/e 'Ta and fl sufficiently large we have 

sup e.,.(r M > t) ~< exp{ - e  'Ip/2} 
x ~ S  

This means that the process spends, with large probability, almost all 
the time in M. This result suggests that, if we look at the process X, on a 
sufficiently large time scale, then it can be described in terms of transitions 
between states in M; in this way only the behavior of the process on small 
times is neglected. 

Indeed we can consider the less stable states in M and we can define 
a time scale t] corresponding to this smallest stability: 

t , - e  V~p+~/J (2.5) 

where 

V] - min V(x, y) (2.6) 
x E m .  I, E S  x 4- y 

and J = J(fl) goes to zero as fl tends to infinity. 
We can then construct a new Markov chain .~, with state space M, 

corresponding to the original process with a rescaling time t], by defining 
a sequence of stopping times (~, (2,..-, ( ...... such that (,,+ ] - ( , ,  is of order 
t I with large probability and X~,, belongs to M. 

More precisely, we define the sequence of stopping times 

and for each n/> 1 

(o -= min{ t >/0: X, E M} 

a , , - m i n { t > ( , , _ , "  X, § Xr 

r , , - -min{t  ~> a,," X , ~ M }  

( , = ~ ( , , _ l + t  I if a , , - ~ , _ l > t l  

tr, ,  if a , , - ( , _ l  <~t] 

(2.7) 
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It is easy to see that the sequence )(, = Xr is a homogeneous Markov 
chain. For any pair of states x, y e M we denote by/5(x,  y) the transition 
probabilities of the chain )(,; it is possible to prove (L') that these transition 
probabilities satisfy the same assumption (property N) satisfied by the 
original chain X,, provided we identify states which are equivalent with 
respect to the relation (2.3). More precisely, for any x, y e M, x + y, 

exp{ --A(l)(x, y) fl -- 7'fl} <~ fi(x, y) = P(Xr = y  I Xr = x) 

<~exp{ -Am(x , y ) f l+7 ' f l }  (2.8) 

The quantities Am(x,  y) are defined by 

A(])(x, y) = inf I[o.,l(e})- V 1 (2.9) 
t,,~: ~bo = x,  4,~ f lY,  

( b s ~ M \ [ ( x ) ~  u ( y ) . ]  

and 7' ~ 0 as fl ---, oo. 
It is easy to show that the quantities A(~)(x,y) are invariant with 

respect to the equivalence relation, i.e., A ( l ) ( x , y ) = A m ( x  ', y') if x ~ x '  and 
y ~y ' .  In other words, equivalent states are not distinguishable in this 
construction. 

More precisely, let S ~ -  M/~  -- { equivalent classes in M} and for 
any i e S  (l) let mi be the subset of M given by the states belonging to the 
equivalence class i, that is, M =  Ui~sm mi. 

We can define a new chain X(, I) on S ~) with transition probabilities 

1 
P(')( i ,J)-I i (mi)  ~, li(X) ~ f i (x ,y)  

x E m i  y E m j  

where fi denotes the invariant measure of the chain )(,. This measure fi is 
related to the invariant measure r of the chain X, (which is strictly positive 
by the ergodicity condition) by the following relation [see ref. 17, Eq. (4.3), 
p. 119]: 

~(c)= g(x) ex ~ xc(x,) 
x ~ . M  t = O  

where C c  & Xc is the characteristic function of C, and Z is a normaliza- 
tion constant. 

Property ~ obviously holds also for the chain XC, 1) with the same 
function A (~) and the invariant measure of this new chain is given by 
/.tlll(i)=fi(mi) for each ie  S m. 

822/84]5-6-7 



994 Olivieri and Scoppola 

Thus we have a new chain X~/~ on the state space S ~1, to which we 
can apply again the same analysis, by defining new stable states, a time 
scale T2, a corresponding chain XI, -'~, and so on. 

We recall here the iteration scheme introduced in ref. 12. 

N o t a t i o n .  The superscript (k) will denote the various quantities 
referring to the kth  chain yCk~. e.g., r~  t = min{ t: glk~ ~ Q} Q e s ~k~ 

For any k/> 1 we define the following quantities. For any r N ~ S ~1, 

t - - I  
(k}  I[o.,](r = Z A~kl(r r  

i = 0  

Va'~(x, y)  = min I[~l.,]{O) 
t. 4': r  = x ,  4't = y 

x ~~k~y if and only if 

M~k~ = { x e S~k~: Yy e S Ik~, y § Ck~ x 

Vk + 1 = min v~kl(x, y)  
x ~: M {k), y E S Ik) .v 4A k) y 

t k  + 1 = e V k + l f l  + 6 f l  

T1 =t~ 

Tk+~ = t ~ t 2 . . .  tktk+~ 

s~k + ~ = MI~'I/~,., 

d ~k+ '~(x, y) = rain 
t ,4, :  4o  = x .  4,, = y ,  

dd s r M Ik} \ [ ( x l _ ~ k }  w { y )  ~ lkq]  Vs  �9 [ 0 .  t ] 

Vx, y e S ~k~ 

VIk~(X, y)  = v~kl(y, X) = 0 

V~k~(x, y) > O} 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

{ k )  
Ir0. ,1(r  V~.+~ 

(2.16) 

(2.17) 

Vx, y ~ S  ~+1) 

(2.18) 

The main results proved in ref. 12 can be summarized as follows: 

Theorem 2.1. Let W c S  ~ and B c  W, and let I~" and B the 
corresponding sets in M (I.~'= [.),.~ w m i  and analogously for/~). Then for 
any sufficiently large fl and for any x ~ m i ,  i e S ~ \ W ,  j e  W, there is a 
positive 7' depending on y and tending to zero as fl ~ oo such that 

exp{-7'f l} P; (X~,,, = j )  Pi (X~w =JJ 

e x p { - y ' f l } t  l,-~,r'"~""<~Exrw<~exp{)"fl}'~w ,,~,r""'"'ow 

exp{-7'f l} ld"(B)~</t(/~) ~< exp{y'fl} I?"(B)  

for any B = S ~). Moreover, for any A ~ S \ M  

p(A) ~< exp{ - V, fl + 7'fl} 
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Since IS")l ~ IS"- ')l  (actually one can prove that IS (i+ l) I < IS"-~) I), 
the above results provide a useful tool for the evaluation of these quantities 
when IsI is large; in fact one can consider a time rescaling T,, so large that 
the corresponding state space S ~'~ is so small that explicit computations are 
easy at this level. 

In order to control the large-deviation phenomena, for the Markov 
chain X,, taking place during exponentially long times Tk, we collect, in 
the rest of this section, some general and quite easily proved results related 
to this renormalization procedure. The main statement on the behavior of 
the chain X, on exponentially long time intervals will be given in Section 5. 

Let us start by the following remark: We note that in the construction 
of the previously recalled renormalized chains, we have to identify equiv- 
alent states at each step of the iteration. In fact, due to the time rescaling, 
the renormalized chain does not have enough resolution to distinguish 
among equivalent states. This fact implies that chains at different steps of 
the iteration live on different probability spaces. However, we want to 
define now an application between trajectories of chains at different levels 
of the iteration. 

More precisely, for any integer n, to any path ~b of the Markov chain 
X,, ~b ~ q~(S), we want to associate a path ~b ('') of the Markov chain X(, ''~, 
~bI")~(b(S(")), which is in some sense a projection of the path ~b in the 
smaller space cl)(S(")). On the other hand, to any path ck(")E~(S( ' ) )  we 
want to associate a set, say a tube, of paths ~b e q~(S) having projection ~b ('). 

D e f i n i t i o n  2.1. For each path ~ b ~ ( S )  we evaluate the sequence 
of stopping times (,, and we define a path ~ ~(M)  given by ~ ;=  ~c,. To 
each path ~ E ~ ( M )  we can obviously associate a path ~b(~)~(S (~)) by 
defining ~btsi) = i if ~s~mi. 

Using the same construction, we can thus define a sequence of trajec- 
tories {~b~ '')} ;~N in the spaces q~(S ('')) with 17 = 2, 3 ..... 

On the other hand, to any given sequence of states in S("~: ff~"), i~< T, 
we can associate a tube of trajectories in (b(S) as 

~'-(ff("', T )=  {~b ~ qb(S): q~")=~h~ ''), Vi~< T} (2.19) 

By construction this application between trajectories in q)(S) and 
trajectories in (b(S (')) is such that 

P'"'( X!~Y' = ~b!,. ''), Vs <~ T) ~ P( X, ~ ~'-(ff'"), T)) (2.20) 
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where we say that  two quantities A and B are logarithmically equivalent 
and we write A ~ B if they have the same exponential  asymptot ic  behavior  
in fl, namely 

A ~ B if and only if ; i r n  ~ In A = lim 1 p~ ~ ~ In B (2.21) 

We say that A is logarithmically greater than B and we write A ~ B if 
and only if 

lim ~ l n A ~ >  lim ~ l n B  (2.22) 

Definition 2.2 .  With this applicat ion we can also define a 
sequence of r andom times Z~ corresponding,  on the original t ime scale, to 
the times k on the time scale of  the chain X ("). More  precisely, given a path  
~b E ~(S) ,  we have defined a sequence of  times G0 ..... ffk .... and a pa th  
~b(~)~ ~ ( S  (1)) associated to it, and, iterating, sequences of  times r(i) r(;) '-a 0 .j..., ,-a k , . . .  

and paths ~b (i + 1 ) E ~ ( S  (i + l )) for each i = 0, 1 ..... 
We define 

Z~ = (r , n = 1, 2 .... (2.23) 
C(z) 

which is a r andom time with respect to the process X,. 

Definition 2.3.  For  each x e S  (") we can define a set g~ belonging 
to the original state space S, obtained by associating, at each step of  the 
iteration (~<n), to each equivalence class the set of  its elements. More  
precisely, if n = 1, 

] - (2.24) g'.,_ - m~ 

and, for j =  1 ..... n, if x E S  (j) and m(~! -~) are the elements of  S ( j - I )  corre-  
sponding to the equivalence class x, then we set 

e , . _  U e ~ 7 '  (2.25) 

F rom  (2.25) we construct  iteratively 4~ c S. 
If we define 

S ( " ) =  U g~. (2.26) 
x �9 S In] 
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we have immediately 

~(I) = M, 

and by iteration it is easy to see that 

X'z~k~ ~(n), 

and 

997 

~.~(i) C g( i - -1)  (2.27) 

Vn = 0, 1 .... (2.28) 

rs,.~ = Z g  

Indeed (2.29) immediately follows from a more general result: 

L e m m a  2.3. For  any A e S (") let g ]  = [.)~'~A g~-; then 

n r ~  = Z6.,  

Proof. 

(2.29) 

The straightforward proof comes immediately from definitions 
(2.24)-(2.26). II 

The results stated in Theorem 2.1 allow a control on the expectation 
of hitting times. We give here some results which enable us to control also 
in probability these random times. 

We first notice that for any set Q c S we can define a chain X, r with 
almost absorbing states in QC as follows: 

PQ(x, y) = P(x, y) if x e Q 

PQ(x, y )= P(x, y) e -p'~IQ) if x e Q c, x4: y 
(2.30) 

where A(Q)>~_,:,,~_~Q A(y, z) and PO(x, x) is defined by normalization. 
As far as the first exit from the domain Q is concerned, the two chains 

X, Q and X, are completely equivalent (the superscript Q denotes all the 
quantities related to the chain Xf).  

Proposition 2.1. For  any Q c S  and any integer n let (~(n))Q 
denote the state space of the nth renormalization of the above-defined 
chain Xf;  let 

N = N(Q) _ max{N: Q cn (~(N)) o 4: ~ }  (2.31) 

Then: (i) For  any xeQc~(g lm)  0- 

ExZQ,. ~ T N 

[see (2.21) for the definition of ~ ] .  
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(ii) For  any a > 0 there exists k = k (~)>  0 such that for any x ~ Q c~ 

Px(TNe-~P<~rQc<~ T/ve ~p) >/1 - e  -kp (2.32) 

Proof .  Point (i) is an immediate consequence of Theorem2.1. 
Indeed, since the events considered in this proposition belong to the 
a-algebra ~ .  generated by the events depending on the process up to time 
rec, we can consider the chain X~ instead of the chain )f,, and thus 
Q" c (~c N + I I) o. On the other hand, since Q c~ ( S (N + 1 )) Q = ~Z~, this implies 
Qc=(~(N+I))Q. For notational convenience we will omit from now on in 
this proof the superscript Q: only the chain X, ~ is considered here; as we 
noticed above, the same estimates hold for the chain X,. 

By iterating N times Theorem 2.1, we obtain 

ExZQ,. ~ t I �9 t z . . .  t u �9 EI NIz~ N) x T N 

since Qc~ ~(u+ l )_  ~ and thus r ~jv~-I~v) v 1. 
To prove (ii) we first notice that by using Chebyshev's inequality we 

have immediately that for every ~ > 0 there exists k > 0 such that 

P,.(r O,. > TN e~#) <~ e - k #  

So we need only to prove that Va > 0 

P. , . (rQ, .<Tue-~#)<<,e  -k/J for some k > 0  (2.33) 

Since QC=~tN+l), by (2.29) the proposition is thus proved if (2.33) 
holds when we replace re,. by 

Z ~  + 1 = Zr  

Since x ~ ~ ( m \ g l u +  ii, we have (~NI> 1 and thus the proposition is proved 
if we prove the following more general result: 

k e m m a  2.4. For  any N~> 1 and for any sufficiently small positive 
constant a (i.e., such that t , ,e -~/J> 1 for all n) there exists a positive con- 
stant k = k(a, N) such that for any x ~ ~INI 

P,.( TNe  -~P <~ Z N <~ TN e~#) >1 1 -- e - k#  

for any fl sufficiently large. 

R e m a r k .  In the application of this lemma we are not interested in 
making the best choice of the constant k(a, N). We will prove the lemma 
with the crude choice k(a, N) = a/2 N. 
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P r o o f  o f  L e m m a  2 .4 .  The p r o o f  is by induction. We first p rove  the 
initial step: 

P x ( t l e - e #  <~ ( 1 ~ t l e  ~p) >1 1 - - e  -k#  

By applying L e m m a  2.1 we have immediate ly  

Px( ( ,  ~< t, e-~#) 

<~Px(al < t i e  -~p) 

<<- Px(~  t < t ~ e - e,: A ( X , ,  X ,  + 1 ) >-- V, ) 

<<. t I e -~Pe - rap+ y'a = e - C e - ~  - r)# 

and by L e m m a 2 . 2  the probabi l i ty  P_..((~>~tle +e'a) is superexponent ia l ly  
small. So, for fl sufficiently large, J + ), < a, the validity of  the first step of 
the induct ion is p roved  with k(a,  1 ) =  a - J - Y -  

N o w  assuming that  there exists k = k(~, n - 1 ) such that  

P,.( T,,_ I e -e'a ~ Z~ - l ~ Tn _ i ee'a) ~> 1 - e -k t  . . . .  l)'a (2.34) 

we want  to p rove  the same as n -  1 is replaced by n. We use the fact that  
by definition the t ime 

Z ' ~  = 9 . -  Z., (~n - I ) 

where (~"-1) is a r a n d o m  t ime defined like (1 for the chain X ( ' -  l). In other  
words,  Z'i  is a sum of  (t ,"-  1) r a n d o m  intervals of  t ime distr ibuted like Z'~ - 1 
We have 

P.,.(Z'[ < T,,e -='a) 

<~ e x ( ( ] " - 1 )  < t,,e-=#/2) 

+ p ,.( { ~ n -  l) >>. t,,e-='a/2} 

~,, - l) intervals ca { there are at least ~ 1 

of  length < 2 .  T,,_ l e e'a/'-} ) 

By using'(2.34) at step n -  1 and the s t rong M a r k o v  proper ty ,  we can 
est imate the last probabi l i ty  by means  of  a Bernoulli  dis tr ibution ~ = 0, 1 
with 

p - - P ( ~ =  + l ) =  1 - - P ( ~ = 0 )  

= max  P , . ( Z ~ -  l < 2 .  T, ,_ i ee'a/z) ~ e  - k l~ /2  . . . .  l ) - . ' a  



1000 Olivieri and Scoppola 

with e --, 0 as fl --, oo. Indeed, 

, ,  
P ~ +  ... + ~ t - l p > l  - p  <~12(1/2_p)2 

and if ~ is sufficiently small (but independent of fl) and l>~t,e -~#/2, we 
obtain the estimate 

Px(Z'~ < T ,e  -~p) ~ e -k# 

with k = e/2". 
We can analogously estimate the probability P,.(Z'~ > T,e+~#). | 

We conclude this section with a result referring to the existence of a 
set of trajectories in ~(S) associated to a given path in ~(S  ~")) on which 
the probability is concentrated. 

P r o p o s i t i o n  2 .2 .  Given ~b~"~e~(S ~')) and a time T (independent 
of fl), let Yo(~Y "1, T ) c  #-($~"), T) be defined by 

~0(~b I''1, T ) -  {~b e Y(~b ~'), T): T,e-~a~Z~<<. T,e~#Vi, k 

such that i . Z k ~< Z r and V~ sufficiently small} 

Then for any ~b e : - (~") ,  T)\~o(~Y "1, T) we have 

P(X, = ~b, Vt <<. T) <~ e-k# 

for some positive k independent of ft. 

Proof  The proof of this proposition is an easy consequence of 
Lemma 2.4. II 

3. G R A P H S  A N D  CYCLES 

In this section we recall the main results on the first exit problem 
proved by Freidlin and WentzelP 5) and we give a more general definition 
of cycles. We note that the results in ref. 5 are mostly formulated in the 
continuous case, i.e., for the study of a diffusion process defined by a 
stochastic differential equation in Rd: 

dX ,=b(Xr )d t  + e d W ,  (3.1) 
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where W, is the d-dimensional Wiener process at time t and e is very small 
(e2= lift). The drift term b(.)  is such that the deterministic flow 

dX, = b( X,)  dt (3.2) 

has ~o-limit sets contained in a finite number of compact  sets K1, K2 ..... K~. 
We summarize here their results in the simpler case of a Markov chain 

satisfying the ergodicity property and property ~ given in the introduction. 
Their analysis is based on the following: 

Definit ion 3.1 (B-graphs). For  any set of states B ~ S, a B-graph is 
a graph consisting of arrows m ~ n  with m e B  and n e S ,  m r and 
satisfying the following properties: 

1. Every state m e B is the initial point of exactly one arrow. 

2. There are no closed cycles in the graph. 

Condition 2 can be replaced by: 

2'. For any state m e B there exists a sequence of arrows leading from 
it to some point n ~ B c. 

In other words, a graph is a forest of trees with roots in B c and with 
branches given by arrows directed to the root (i.e., the set B c is the target 
of the sequences of arrows). 

The set of B-graphs is denoted by G(B); for any graph g e  G(B) we 
define n(g)  = r I  . . . . .  g P(m,  17). 

By using this graphic formalism, Freidlin and Wentzel (5) prove the 
following lemmas. 

Warning. Our notation is opposite that used in ref. 5, where a 
W-graph was a graph with target W, i.e., a We-graph in our notation. 

L e m m a  3.1 (FW). The invariant measure of the Markov  chain 
X,:p( i ) ,  i t S ,  is given by 

p(i) = q/ 
Z , j � 9  

where 

qi = ~ r~(g) (3.3) 
g �9 a{ s\i} 
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Le m r na  3.2 (FW). For  any B c S  let r s  be the first hitting time to 
B; then for any j ~ B 

Zg ~ c,jl~ ~ n(g) 
Pi(X~B =J )  = Zg~a~Bc~ re(g) (3.4) 

where for any iEB c a n d j e B  we denote by Go.(B c) the set of Be-graphs in 
which the sequence of arrows leading from i into B ends at the point j (i.e., 
i belongs to the tree with root j). 

L e m m a  3.3 (FW). We have 

~'geG�91 ~(g) -~- ~ ' j ~ B c ,  jv~i  ~'~'geGij{B\{j}) n ( g )  
Eir B - 

_ Zg~ c,~- s~ ~(g) (3.5) 
Z~c~B~l r~(g) 

where G(i 7~ B) is the set of graphs (without closed loops) containing 
IBC[- 1 arrows m--, 17 each one emerging from a different point m ~ B" and 
with nES,  m Cn, and not containing chains of arrows leading from i 
into B. 

Lemma 3.1 is easily proved by showing that the quantities q~ satisfy 
the stationarity equation; Lemmas 3.2 and 3.3 can be proved by induction 
over the number of states contained in IV" (see ref. 5, pp. 179, 182). 

By using property ~ ,  these results can be reformulated as follows/5~ 
Consider the problem of the first exit of our chain X, from a domain Q c S 
and let rQ, be the first exit time from the domain Q. 

Proposition 3.1 (FW). For any 6 > 0 and for any sufficiently large 
fl there exists 6 > 0 such that 

e -p  wQ~ ...... ~- wo+~l ~< P,.(X~e, = y )  ~< e -#1 w~.,-.:.l- w~-~) (3.6) 

for any x E Q and y ~ Q", with 

Wo(x,y)= min W(g) (3.7) 
g ~ G.vy( Q ) 

We= rain W(g) (3.8) 
gEGIQ) 

W ( g ) -  ~ A(m, 11) (3.9) 
t l 1  ~ it E g 

and 6-- ,0  as fl--, ~ .  
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P r o p o s i t i o n  3.2 (FW). For any x e Q let I:.,_ be the set of states in 
QC such that there exists at least a graph minimizing (3.8) and containing 
the sequence of arrows x--, .-- ~ y. Then with probability converging to 
one as fl tends to infinity the first exit from the domain Q of the process 
starting at x take place in Y,.. (See ref. 5, Theorem 5.2, Chapter 6.) 

Proposition 3.3 (FW). For any x � 9  

lira 1 In E,.rQ, = W Q -  MQ(x) (3.10) 
P 

where 

Mo(x) = min W(g) (3.11) 
g ~i G { x  ~ .  QC) 

Let us now suppose that the set Q contains a unique stable state Xo 
completely attracting this set, i.e., for each y �9 Q there exists a path Yo = Y, 
Yl ..... y , = x o  such that A(y l , y i+ l )=O,  Vi<n, while z J (y , z )>0  for each 
y �9 Q, z �9 QC. Then in this case Freidlin and Wentzell can describe in com- 
plete detail the exit from Q. 

First, in this case the quantities (3.4) and (3.5) can be easily estimated 
as follows (ref. 5, Theorems 2.1 and 4.1, Chapter 4): for all x � 9  Q 

lim ~ ln  E~.rQ,. = min V(xo, y) 
p ~  ,:c :,~ Q" 

where V(xo, y) is defined by (2.2), and if there exists a unique state Yo �9 QC 
such that V(xo, Yo) =min.,.~Qc V(xo, y), then 

lim Px(X~e.=y o) = 1 

Moreover, in this case of a domain Q containing a unique stable state, 
the last escape is described quite precisely and completely in ref. 5. 

We state now their result in our discrete case of Markov chains (see 
ref. 5, Theorem 2.3, Chapter 4 for the continuous version of this result). 

We warrt to notice here that in the continuous case of diffusion 
processes discussed in ref. 5 the dynamics corresponding to zero random 
noise was given by a dynamical system, that is, the unperturbed system was 
completely deterministic and for each starting point there was a unique 
deterministic path emerging from it. The tube of typical exiting trajectories 
was given, in that case, as a neighborhood, in the uniform topology, of 
such a deterministic path. 
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Here, in our present case with finite state space, the situation is 
different and, even for p = oo the system can still be random. This means 
that there is not a unique deterministic path, but several possible paths 
emerging from the same starting point. Moreover, we do not have to con- 
sider a neighborhood, since the space is discrete. So the typical exiting tube 
in this case is a finite set of individual paths. 

Proposition 3.4. Let Q be a set of states containing a unique 
stable state x 0, and for each given ~ and fl define 

~ # - -  { {r 3T~ < e  ~#, ~bo =.x" o, ~br,~ QC, q6~ Q, Vs< T~} (3.12) 

and 

~ , 0  =- {q}s C qS p: I[o,r~,](q~ ) = rain V(xo, y)} (3.13) yEQ~ 

Then there exists So (see Lemmas 2.1, 2.2) such that if o~ < So we have 

lim P.,.(Xo.~o+t=ck,, Vt=0  ..... rQc--0x0forsome~bcqS~p)= 1 (3.14) 
fl~oo 

where 0,. 0 - max{ t < re,.: X, = x0}. 

Proof. A proof of this proposition can be easily obtained by applying 
Lemmas 2.1 and 2.2 (see ref. 11, Proposition 2.1, for a complete proof). | 

For each Q = S let g~ c G(Q) be a Q-graph minimizing the quantity 
We defined in (3.8). 

Freidlin and Wentzel, assuming that g~ is unique for every Q c S, 
introduced the definition of a sequence of sets, called cycles, which are use- 
ful to describe the behavior of the process X, in time intervals exponentially 
long in ft. 

However, this uniqueness hypothesis is very restrictive. Indeed, if we 
assume it, for instance, in the case of a reversible Metropolis dynamics, we 
end up with a trivial problem in the sense that there is a unique minimum 
of the energy function. 

We will drop the uniqueness hypothesis and so we will need a more 
general notion of cycle. In the literature, especially in connection with 
simulated annealing, extensions of Freidlin-Wentzel cycles have been intro- 
duced. See, for instance, refs. 6, 2, 14, and 15 (and references therein), where 
the basic results on cycles have been proved in the general case. In what 
follows, to be self-contained, we will give the basic definitions on cycles and 
discuss their main properties; for the proofs we refer to refs. 2, 3, and 14. 3 

3 See also the extended version of the present work in the Texas archive mp-are 95-423. 



Markov Chains: First Exit Problem 1005 

D e f i n i t i o n  3 .3  (General Cycles). Given a set of states/2 and a graph 
of arrows connecting pairs of states with at least one arrow emerging 

from each state, we define the following partition of the space g2. 
For  any given state x 0 �9 g2 we define the set of its descendants as 

follows: 

Axo~ {Xo} w {x s f2:3 a sequence of arrows 

contained in fr Xo-~ Xl ~ -.. ~ x} (3.15) 

By definition, the graph f# has no arrows exiting from the set A,. 0 
(possibly Axo = /2)  and A:r ___ Ax0 for any x e Ax0. We say that A satisfies the 
cyclic property if 

A , . = A  for any x � 9  (3.16) 

If  Ax0 satisfies property (3.16), we call it a cycle; otherwise its decom- 
position into cycles goes as follows. We call the singleton {Xo} a cycle. 
Moreover, let xl �9 A,- 0 be such that the set of its descendants Ax, is strictly 
contained in Ax0. Such an xl exists ifAx0 is not a cycle. If the set Ax, satisfies 
property (3.16), then it is a cycle. If  Ax, is not a cycle, we define {x~} to 
be a cycle and we choose x2 �9 Ax~ such that the set of its descendants A.~,_ 
is strictly contained in A,.,. It is easy to prove that this procedure stops at 
a certain x ,  such that A~, is a cycle. In fact IAx, I < IA~,_~I and for any set 
of descendants A we have IAI/> 2. 

We have now to start again this procedure for all the states which 
have not been touched by the previous construction, i.e., outside the set 
{.,o} u {x,} u . . .  {x ._ ,}   Ax.. 

In this way we obtain a partition of 0 into cycles. 
Now we will apply this abstract definition of cycles to our case. We 

consider first g? = S and we define a graph (r as follows. For  any Q c S let 
RQ(-) be a function from Q to the parts of S \ Q  defined as follows: 

R e ( x  ) = { y �9 QC: there exists a graph g~ minimizing WQ 

and a chain of arrows x ~ -.. ~ y  �9  (3.17) 

Given a pair of states xl, ,-cj �9 S we say that x: is a successor of x;, and 
we write: xi ~ :9 iff x: �9 R I.,.,~(x;). 

We obtain in this way a graph f~o. 
We want to stress that this graph f~o is not, in general, a B-graph 

satisfying Definition 3.1, and generally several arrows emerge from a single 
state in f9 ~ 
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Cycles of rank zero: The O-cycles are defined as the single states. We 
denote by c~o = S the set of O-cycles. 

Cycles of rank one: If O = S  and (r = (r the previously defined 
cycles are called l-cycles. We denote by ~g~ the set of 1-cycles. 

Cycles of rank k: We procede by iteration. We consider as states the 
(k-1)-cycles ,  i.e., at each ( k - l ) - c y c l e  C~ -~ we associate a point and 
C ~ - ' ~  C~- '  iff Rcf-,(x)~C~-'  for all xEC~- ' .  As we show in the next 
section, dedicated to cycle properties, actually the set Rc~-~(x) does not 
depend on x, and so the definition of successor is well posed. 

In this way we define a graph (r J of arrows between (k - 1 )-cycles. 
The cycles in the case/2 = cg~- ~ and ff = ffk-1 are called k-cycles. 

R e m a r k s .  At each step a k-cycle, with k/> 1, turns out to be either 
a (k - 1 )-cycle or a union of (k - 1 )-cycles which is the minimal descendant 
set, where minimal is respect to the relation (3.16). 

This means that each ( k -  1 )-cycle contained in C k is a descendant of 
each other ( k -  1 )-cycle contained in the same C k. 

We note that for each k the set of cycles of rank k define a partition 
of the state space S. 

We conclude this section with a final remark. The rank of the cycles, 
here as in the definition by Freidlin and Wentzell, under the uniqueness 
hypothesis, is a parameter necessary to the construction, but it does not 
have an intrinsic meaning. The iteration of this cycle construction is com- 
pletely different from the renormalization procedure, where the iterative 
parameter has an immediate interpretation in terms of time rescaling. 

4. P R O P E R T I E S  OF THE CYCLES 

We collect in this section the main properties of the cycles. 

Proposition 4.1. If C and C' are respectively a k-cycle and a 
k'-cycle, then 

Cr~C' #~3 implies C~_C' or C~C'  (4.1) 

For  any set B c S we will denote, as before, a B-graph minimizing WB 
by g* [see (3.8)]. 

Moreover, we recall that the cycles of rank 0 are identified with single 
states and we set g~  = ~ .  
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P r o p o s i t i o n  4.2. For  any k-cycle C k, with k >/1, we have: 

(a) Given x � 9  C k for any z �9 RCk(x), and for any Ck-graph g% with 
an arrow ending in z, there exists y �9 C k such that 

g~.k * u (y--, z) (4.2) = gc~.\ly} 

(b) For any set A v ~ ,  A c C  k, each (Ck\A)-graph g~'k\A mini- 
mizing WCk\A does not have arrows exiting from C k (then at least one of 
its arrows ends in A) and can be written in the form 

g~k\~ U *k-, (4.3) = g c,,, \a 
m: c k z  I ~ C k 

(c) Each Ck-graph g*k minimizing Wck has a unique exiting arrow 
and this implies, in particular, that the successor set of the cycle Rck(x) 
does not depend on x, i.e., Rck(X)=: Rc k. 

P r o p o s i t i o n  4.3. For  any set C with IC[ > 1, the following are 
equivalent: 

(i) Cis  a cycle. 

(ii) For any cycle C' contained in C the successor set [see (3.17)] 
satisfies 

Rc, c C  

(iii) There exists K > O  such that for every xeC ,  B c C ,  xCB, and fl 
sufficiently large we have 

P~.( X~cr q~ B) < e-rP (4.4) 

(iv) Exrcc is independent of x � 9  C in the sense of logarithmic equiv- 
alence and for any B c C and for any x �9 B and z �9 C 

lim ~ lnE, . r sc<) im ~lnEzrcc (4.5) 

Remark. Statement (iii) describes what we call the recurrence 
property, which is one of the main features of cycles. 

We note that from (iv) of this proposition and from Proposition 4.1 
the quantities Vc, := limp~ o~(lift) In E,.zc~, provide a natural ordering for 
cycles C i containing a given state x o alternative to the rank. 
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As proved in ref. 11 for the reversible case, a consequence of the 
recurrence property of cycles is the exponential distribution of their first 
exit times. 

P r o p o s i t i o n  4.4. If C is a cycle, then for any x, y e  C, ~ > 0, we 
have 

lim Px(E,,rc~e -~p <<. rc, <~ Eerc, e +ap) = 1 
p ~  oo 

(4.6) 

and the probability distribution of rcc, when suitably renormalized, is 
asymptotically exponential as fl--* oo. More precisely, let Tp be such that 

sup Px(rcc > Tp) = e -1 (4.7) 
x ~i C 

Then, Vx e C 

lim E~.rcc_ I (4.8) 
p ~  T# 

and VxeC,  YseR + 

( r c c >  s)  = e  -'~ (4.9) li~moo P" \ Tp 

We conclude this section by giving some properties of cycles connect- 
ing them to the renormalization procedure of Section 2. 

More precisely, the aim of the remaining part of this section is to 
associate to each state x n e S  ~'~ a cycle Cx, for the original chain X, 
representing the region of the state space S corresponding to the renor- 
malized state x" under the time rescaling T,,. The precise statement of this 
correspondence will the subject of the next section (see in particular 
Theorem 5.1 ). 

First of all we will define the generalized basin of  attraction of each 
state and we will prove their main properties. Finally, by using these 
properties, we will be able to define the particular cycles C.,~ Vx"~ S c'). 

We recall, once again, that the superscript (n) denote quantities 
related to the chain X ~"). We will denote by x", y" elements of the space 
S ~ and by m!'~ '-~) the set of equivalent states in M ~ " - ~ _ S  ~"-1~ (with 
respect to the equivalence relation ~ c , - ~ )  corresponding to the equiv- 
alence class of x". 
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Definition 4.1. For  any n >/1 and for any x " � 9  S ~'~ we define the 
bas#~ o f  attraction of  x" as the subset of  S ~'-l~ given by  

( n - - l ) .  v ( n - I ) ( z n - I  y n - l ) = 0 }  B O ' - l ) ' = { Z " - l � 9 1 4 9  . .vn �9 

Defini t ion 4.2.  We say that  a state x � 9  is connected by a steep 
path to x" �9 S ~'~ if and only if there exists a sequence of states of  increasing 
stability y S � 9  m, i = 0  ..... n, such that  y ~  y" = x ' ,  and 

�9 n l i ) ,  y '  �9 z~.,,,. ~ V i = l  ..... n - - 1  (4.10) 

Defini t ion 4.3.  Given  x " � 9  I'~, we define the generalized basin o f  
attraction (GBA)  of x" at level n as the subset of  S given by 

~,~-" := { x �9 S connected by a steep pa th  to x"} 

We can also define a G B A  for a set of  equivalent  states (i.e., a 
"pla teau")  instead of  a single state. 

In the following we will often use the short  nota t ion  p(") to denote  a 
plateau ~"~ x" + 1 m.e,+, for some . We recall that  p~"~ is made  up of stable points  
of S~"~: pl,,I = (x" + l) -,, with (x" + 1 �9 M~,I). 

We define 

Remarks. 

- - t l  __ 

))X~ptn) 

It is immedia te  to verify that  

- - n  o ~ " -  l 

n -  I E B(~l - I I  

i! - -n  It is also immedia te  to verify that  for each x E g.,~ we have x �9 ~ ,~  and that  
for any y �9 jo~, with y" r  we have y r ~,~.-" 

On the other  hand,  we notice that  for any n ~> 1 the GBAs  - "  ~ ,~  define 
~ l l  --n 

a covering of the space S for x" �9 S ~'~. Different GBAs,  say ~,.~, ~x',_', with 
x'~, x g � 9  ~''~, can part ial ly over lap  since there m a y  exist "saddle" states 
decaying to different equil ibrium states. 

We used a superscript  n in the definition of  the G B A  to emphasize  that  
it depends on the index 17. More  precisely, if a state belongs to two different 
state spaces x �9 S ~'~ and x �9 S I" + l i, then we have ~ .  _ ~, ' .+ i. 

822/84/5-6-8 
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Defini t ion 4.4. We will define the strict generalized basin of  attrac- 
tion (SBGA) of x", the set given by 

:= U 
yn E S In), yn # .xJ~ 

For any plateau pr  S ~''~ we analogously define 

( )c 
" := U 

ff~ ~ S(n) \pl  n) 

--n 
Defini t ion 4.5. For  any x~Mv, ,  we say that the process X,, 

starting from x, falls to the bottom x" if the following event takes place: 
there exists a sequence yO, y~ .... satisfying Eq. (4.10) with y ~  y " = x "  
such that 

One can show that with large probability, starting from any state x, 
the process first reaches the bottom of its SGBA. More precisely: 

Proposi t ion  4.5. Let x"~Sr for each x e ~ ,  we have 

P..(the process falls to the bottom x")/> 1 - e -Kp (4.11 ) 

which implies 

P.,.( Xr ~ ~i~.,,) >1 1 - e - K #  (4.12) 

and 

P,.(r~,,,, < T,,_ 1)/> 1 - e  -K'p (4.13) 

for some K, K ' >  0 independent of ft. 
Moreover, for any x ~ S and for any n ~> 1, let x';, xg ..... x'~' be the set 

- - n  of all the states in S u'~ such that x e ~/,j. Then 

P,.(the process falls to the bottom .xj~ 

for some j =  1 ..... i)~> 1 - e  -Kp (4.14) 

Proof. The proof immediately follows from the definition of the 
SGBA. Suppose that the process starting from x does not fall into x". For  
each trajectory of the process X,, we can define a sequence of states of 
increasing stability as x ~  x, and for each i>~ 1 we take xi~ S u~ such that 
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X~s,,. ) E ~!,.,. If the process does not fall to x", there must be a state x i of this 
sequence such that i~<lz and x i - ~ r  B!,!,-1( This means that the sequence 
X!,."- K), s = 0, 1, 2 ..... that we can construct on the trajectory of the process 
(see Definition2.1) does not follow a path of zero cost to reach a stable 
state. By using Lemmas 2.1 and 2.2 one can easily complete the proof. 
Equations (4.13), (4.14) follow from Proposition 2.1. I 

Remark. If we define the fall to the bottom p(") as the event that 
there exists a sequence yO, yl .... satisfying Eq. (4.10) with y ~  y,,ep(,,i 
such that 

then, by using the definition of the SGBA of a plateau, it is immediate to 
prove that with probability of order one the process falls to the bottom 
p("), i.e., the statement of Proposition4.5 holds even in the case of a 
plateau. 

We can prove something more: first of all, the mean exit time from a 
SGBA is exponentially large, namely: 

P r o p o s i t i o n  4.6. For any n>~l, for any x ' ~ S  ("~, and for any 
8 ~" X0 x~ 

lim fl 1 In E~orl:~, U = V1 + .-. + V, + v( ' )  --x~ 

where V,., i =  1 ..... n, are defined by (2.14) and (2.11) and 

~.") ~ - ~,)) := lira in 
I S ~  ,z, /~~'~ T (x~)' 

[see (2.11)]. 
The same holds for the SGBA of plateaus by replacing the single state 

x~ with a plateau p(") where 

i i  _ _  n 
# p ' ) -  U ~ :  

.CI e ptn) 

Proof. We define the set 

vn e Sin) ~,n ~, _x-~ 

By iteratively applying Theorem 2.1 we have that for any Xo E g~.g 

v O ) ) ~  R1 E,.or D ~ exp[( V l + .-- + V,, + -.,.~, v ,  
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To get the theorem we have only to prove that 

ExorO ~ E,-or~.,~: 

By definition 

Suppose now that 

(~,.,.g, _ D 

Olivieri and Scoppola 

with y --+ 0 as fl ~ oo. 
Indeed we have 

Py(r C~  < T.e -~a/2~a) 

\ 

Py(rC~ < T,e-la/2)#) >~ e -  "/J 

Zn ( d  9 "~ n rSm < ~ - e -  7-)#) 

(4.18) 

E,.0 rD ~- E,.0 rlet~glc (4.15) 

We will prove that this implies 

Px0(rD < e-~E,.0 r D) ~> e-"P (4.16) 

with a > 0 independent of fl and v --* 0 as fl ---, 0% against (2.32). 
Indeed if the inequality (4.15) holds, then there exists d >  0 such that 

E,.o rDe-la/,_.)# >i E,.o r(~g:ela/2)# 

By Proposition 2.1 applied to ~ '~  we have that for any d >  0 there exists 
k(d) > 0 such that 

Pxo(rc~,dl,.~ E.,.oz~7.~g:e+aP ) >>. 1 - e  -ktd)p (4.17) 

To prove (4.16) with a=d/2 ,  since ExorD~ T, ,  it is thus sufficient to 
show that for any 

y e D " n  (~.g)" 

- -n  there exists y":~ x" such that y ~ M :  and thus there exist y~, y2 ..... y" such 
that, if d is sufficiently small (independent of fl), we have 
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x min Pyt(X~so.~e&~nz,j,,.~<T"e-ld/'-)P)... 

( e., 
Y n -  1 E g ~ - / I  " - " n 

with y -~ 0 as fl ~ ~ .  We have used the fact that the probabilities 

p y~ ( r g,+,, > T'-~ e -(~/2)#) 

are superexponentially small. 
Exactly the same proof  holds by replacing the state xg with a plateau 

p(") by using the set 

D'=S U I �9 

In order to relate cycles and GBAs we give now two technical lemmas. 
Their proofs are in the Appendix. The first lemma contains a result on 
graphs and renormalization. The same result in the reversible and non- 
degenerate case is given in ref. 13. Here te presence of equivalent states 
makes the statement more complicated and the proof  much longer. 

k e m m a  4.1. For  any k>~ 1 and for any set Dk=S Ik) we consider 
an arbitrary set D ~- ~ c S (k- ~ such that 

and 

D k - I  ~ U r e ( k - - t ) ,  ( k - - I }  D k - I  x m~. n ~ VxeD k (4.19) 
x E D  k 

Let 

Qk := S(k)\Dk 

Qk-l :=S(k-II\DI,--I 

As in Section 3, we define for any k >/0 

W~- := min ~ A(k)(i, j) 
g ~i G(;"}( Qk) i ~ j E g 

and let g~2* be a graph (not necessarily unique) in GCk)(Q ~) minimizing 
w 2. 
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Then given a graph g~2* we can construct a graph g~~- l ~* minimizing 
W~z~ ~ and we have 

,,,, o ,  + v,, I I (4.20) 

Conversely, given two sets D* and D k-I  satisfying (4.19), given a 
graph ~ k - i ) .  ,z~k - - 1 )  g~'2* ~O*'-, minimizing ,, ok_~ , we can construct a graph �9 mini- 
mizing W(~2. and satisfying (4.20). 

The SGBAs share with the cycles the property that with large prob- 
ability the bottom x o is visited before the exit from .~".. More precisely: 

-,0 

"" ("~ e ,,~'~,, I . e m m a  4.2. For a n y n > / 1  for any x o e S  and for a n y x o  
any (Mi~.g\Xo)-graph minimizing 

W~i~g\.,'o 

[see Eq. (3.8)] has no arrows exiting from ~",,. 
.,-o 

The same holds for each stable plateau, i.e., p~"~=S [''~ with 
V"'(x", y") > 0 for each x" ep~,,i, y ,  Cp,, .  

R e m a r k .  We note here that, due to Proposition 3.1, the statement 
of this lemma is equivalent to the following one: 

n t !  For any n~> 1, for any x g e S " ,  and for any Xoe g,.g and x eM.g  we 
have 

P.,.(X~,~I~\,o,, # Xo) < e -K/J 

for some K >  0. 
We stress that this result is stronger than Proposition 4.5. In fact here 

"- .... is visited before the exit from .~ ,. every state .x o e d.,f. -,-, 

The following result is an easy consequence of Lemma 4.2: 

Proposition 4.7. Any cycle C ' = M ~ ,  such that ~,"Nv r C' satisfies 
. �9 .x. o 

Re, = ~ u  (4.21) 
x o  

The same holds for stable plateaus, by replacing xg with p" ' .  

Proof. Suppose (4.21) is false and let g*., be a graph minimizing We, 
and containing arrows ending outside M ... Moreover, let x'o e d.,.~v c~ . If 
we consider now a graph 

g.~A,i~ \.% 



Markov Chains: First Exit Problem 1015 

minimizing 

we can construct a graph g' coinciding with 

for all arrows with starting points in ( ~ u \ X ' o ) \ C '  and coinciding with g~, 
for the arrows starting in C'. The new graph g', because of the argument 
of proof of Proposition 4.2(a), is indeed a (,~oukx;)-graph minimizing 

�9 �9 �9 I V  t Since g*, has a umque arrow exmng from ,#N, g itself has an arrow exit- 
. - '0 9 ing from #~o~, against the statement of Lemma 4,_. 1 

We prove now the main result of this section: 

P r o p o s i t i o n  4.8. For  any x " s S  ~''~ there exists a cycle C.,~, for the 
chain X, such that 

and 

C,~, n f f l , , }  = .~.~, 

Vc,~ = Vl + " "  + I/,, + V~"2 

C,~ turns out to be the maximum cycle containing g.~, and contained 
It ~ n in the SGBA of x : ~,~,. 

tt Proof .  For notational convenience we set in this proof .#,.,, = B. 
Suppose that for any x0 ~ d'~, we are able to show that the maximal 

cycle C contained in B and containing Xo is such that: 

(i) ,~i~, _~ C. 

(ii) V c  = Vs(.X'o) := lim/j_ ~_(1/fl) In E.,.or~,-. 

Then, by Proposition 4.6, we get the result. Point (i) means that the 
cycle C is the same for each Xo s g.~,. To prove (i) and (ii) we fix .Xoe g.'~, 
and we consider the maximal rank k of the maximal cycle C contained in 
B: C c B, Xo e C, C ~ ~k, where the maximality of the rank k means that the 
cycle of rank k + 1 containing C is not contained in B. 

To prove (i) we note that, as a consequence of Proposition 4.7, the 
SGBA B is measurable with respect to the family ~o 'k of cycles of rank k, 
i.e., B = I,)~ b C~, where b is a suitable set of indices and C = C~ for some 
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j Eb. Indeed, suppose ab absurdo that there is a C' e cgk, C':/= C with 
C' n B ~ ;ZJ and C' r B. Then there must be a cycle C" = B with Re~ ~ B 
against Proposition 4.7. 

Thus not only is B measurable with respect to cgk, but also every 
C~ r C, i t  b, has its successor in B: Rc~.C B. This means that if (i) is not 
satisfied, if C ~ s then again by Proposition4.7, R c c B ,  so that the 
descendants of C are in B and thus the cycle C a. § ~ of rank k + 1 containing 
C is contained in B against the hypothesis of maximality of C. This prove 
that (i) holds and that 

Rcc~ B~ # ;~ (4.22) 

By (i) we know that Vc<~ VB(xo). If now V c ( x o ) =  V s ( x o ) -  2a with a > 0, 
we would have, using Proposition 2.1, 

P,.0( to,- < e/~vcc'~ +") < e-Xa 

with K =  K ( a ) >  0; but, on the other hand, by (4.22) we get 

Px0(ra, < e#VCC~~ + ~') 

~> p,.o(r c,. < eaVcC~,,~ +o n X~c, r B) >1 e -~a 

with 6 --+ 0 as fl--+ oo. This leads to a contradiction, proving (ii). I 

Proposition 4.9. For  any plateau pt"~ which is stable for the chain 
Zt,,~ i.e., - I")--~(")  for some  ~:n+l Sin+l), t" -, , , ,~+, ~ there exists a cycle Cp,,,~ for 
the chain X, such that 

and 

to .vn + I 

V TM ) Vc~., ~ = V l + . . .  + V,, + p.,~ 

Cp,,,~ turns out to be the maximum cycle contained in a~p,,,~-" containing g'p,,,~." 

The proof can be obtained exactly as in Proposition 4.8. 

5. THE M A I N  T H E O R E M  

In this section we give the main tool for the control of the behavior 
of the chain X, on exponentially long time intervals. This result completes 
the analysis developed in ref. 12. 
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For  any pair of states x", y" e S ~") we can in fact describe the behavior 
of the chain X, by knowing that the corresponding chain X~, ") is doing the 
transition x" - - , y " .  More precisely, for any state x " e S  ~') we can define a 
set Q :  contained in the GBA of x" as follows. 

There are two possible cases: (a) m~"~- 1) = x" - l and (b) m!,"- i) = pO, - 1( 
Let C.e,-, (Cp,,-,,) be the maximal cycle contained in ,~,,-I ~,:~,,-i g ~  A . n -  I ~l:)pqn-I)J 

given by Proposition 4.8 (Proposition 4.9). 
For  simplicity we will consider in what follows only case (a). The 

analysis of case (b) is exactly the same since the same properties have been 
proved for generic single states and for stable plateaus in Propositions 
4.5-4.9 and Lemma 4.2. 

As shown in the proof  of Proposition 4.8, the cycles C~ ..... C~ inter- 
secting "~"- i ~,~ : - ,  of the same rank as C : - , ,  say C~ = C : - , ,  are strictly con- 
tained in ~ " -  : o :_ ,  and provide a partition of ~'~"- ~o:_, .  Moreover, by the same 
argument (again by Proposition 4.7), we have that for any . . . . . .  J x e ~ : _ ,  any 
cycle containing x either is contained in ' ~ " -  ~ : - ,  or it contains C : - , .  

' ~ " - ~ \ ' ~ " - ~  Each state x contained Let us now consider the set ~,~:-~\~.~.,.,_~. 
in this set is such that the minimum cycle containing x with nonempty 
intersection with some :~i~,,_] contains C. :- ,  and Cy,,-~. Indeed each 
. ~ n  - -  1 \ 6 ~ n  - -  I -x e ~.e,-, x:'~.:-, is such that there exist at least two sequences x ~ = x, x ~, 

""). " B~'?+, .  x- , . . . , x  " -~  and y ~  y~ ,y2  ..... y " - ~  such that x"ez~,.,.t and y ' e  
Moreover, if x e B,.,, then the minimum cycle different from {x} containing 
x contains x ~, and since x e By,, the minimum cycle different from {x} con- 
taining x contains also y~. If  x ~ Cyt ,  the minimum cycle containing x ~ and 
y~ strictly contains also C,., and Cy,. Again, if a cycle strictly contains Cx, 
and x L - ~'~Jl then it contains x z, and the same for y~ and y2. By iteration 
we can conclude that the minimum cycle containing x with nonempty 
intersection with some .~i~'.---] contains C : - , .  

J g l n  - -  1 - - n  - -  I \  : ) ~ n  - -  1 In conclusion we have that both the sets ~,,:_~ and ~ > ~ _ , \ ~ , :  , are 
measurable with respect to the family of cycles of the same rank as C : - , :  

,•n- 1 . : - , = C l w C 2 w  . . .  w C I w  . . .  w C L  (5.1) 

For  each one of these cycles we have that Vc,<~ V~ + . . .  + V , _ z  if 
i > 1 .  

We can now define the permanence  set  Q :  associated to each x" 6 S~"I: 

D e f i n i t i o n  5.1. Among this set of cycles { Ci}i= L..,L we will con- 
sider the maximal subset {Cg}i~./, with ~r  ..... L} such that for any 
ie J there exists a sequence j l (  i), j2( i) .... j,,,( i) ~ J with j l (  i) = 1, j , , (  i) = i, 
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and Rcj,.,,~ c~ C/~+~.) ~ ~"  
to x ' :  

Then we define the 

Olivieri and Scoppola 

permanence set associated 

Q.,~= [3 ci (5.2) 
i ~ . f  

The set Q.e, is the set of states visited by the chain X, in the interval 
of time corresponding to a transition x " - - ,y"  of the chain yc , ,  More . o r  �9 

precisely, let 

I n - -  1) o. (n  - I ) : =  Z'(,,~.,~-ib,.  

and for any T >  0 let 

�9 1"- l)(x", y", T) 

: =  { ( b ( n -  1) • i ~ ( S l n -  ) l )  such that 

~ o " - ~ l e m ~ . , ~ " , - l ~ , , ~ " ' - ' ~ e - , ' " - " , ~ " ' - ] ' r  T - l }  Y T , , ~ y n  r i  ~ ' ' "  

and let Z , - )  be defined by (2.23). 
We have the following: 

Theorem 6.1. For any a > 0 sufficiently small (see Lemma 2.4), we 
define 

. . . . .  1 T,,eOp] } A, := /z~, , , - , ,_  i s [T,,e - 'p ,  

f 7 n  - -  1 n - -  1 A2 :=/~"~ . , - . -  i < r~Q,,,r <~ Z~,,_,}  

A 3 := { S T, qb I'' - ' ~ e  q~"- l ) (  x", y", T) minimizing r i,,- ,) " [ 0 ,  T ]  

such that X, e .Y--(~b"'- ~, T) Vt > 7 , -  l--, r - I ) __ I } 

G := { =x" ,  '') =y"}  

There exists a positive constant K, depending on a but independent of 
/~. such that for any sufficiently large/3 and for any x s gj., we have 

P.,.(A] c~Azr~A3IG)>1 1 - -e  -Kp 

Moreover, if we add the hypothesis that 

there exists z I ' # x "  such that PO')(x", z") ~ 1 (5.3) 

and if we define 

A4 := { VY e C,,,I,!~, -'~St < ZII'-j~,,, - 'J - t such that X, = y} 
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then we have, for any sufficiently large fl and for any x e g,'~ 

Px(A1 ~ A 2  ~ A3 ~ a 4 l a )  ~ 1 - e  -Kp 

Proof. We will prove that for each i = 1 ..... 4 we have 

Px(A~ I G) <<. e -Ktj 

Let m!~',-i) = m ;  we have 

In- -  I 

e,.(G) = Y. 
,=0 =,,-~ .... ,.:~,-,) 

• E 
T r / ~ l n - I I � 9  y n ,  T )  

( t n / m ) - -  I m - -  1 

= Z 2 
t ' = O  r " = 0  z , , -  ) �9 m(.,~,- ) ) 

• E 

Z P., .({~'"- ' )>t} ~ { x ' , " - " = = " - ' } )  

&~,_,(x!,,,-,) =~,;,-1, Vs <~ T) 

X(,,-i) . . . .  1}) P . , ( { a ( " - ' ) > m t '  +t"}  c~{ , , , , ,+,.=. 

P~,-, (X!,." - 1) _- -.,~b("- I) Vs ~< T) (5.4) 

Since - ('*- i) me, is a class of  stable equivalent states in S ("- i)  we have by 
definition that  for each pair of  states in m(.'J, - I) there is a path if("-11 in 
S ( . - I )  connect ing these states of  length at most  m with )I, ("-I) ~ ,I,(',-~) " v i  F " V i m  ) 

and I ~''- I)(~b("-I))=0,  to which we can apply Lemma 2.1(ii). 
In this way we obtain the following estimate: 

m -  I 

2 i V ( n - -  1 )  - -  . n - -  ) }  P.,.({~r("-')>mt' +t"}  c~ .~ , , , , ,+ , . -~  ) 

m - -  1 

= ~. ~" p , . ( { a ' " - ) ) > m t ' } c ~ { Y  --,,,,, = u " - t } )  
l "  ~ 0 t!t) - I �9 t)l(~Ji - I ) 

_ .  '}) 
>I e-~iJp.,( { G(,,- 1)> rot'} ) 

By using (5.5.) from (5.4), we obtain 

t n / m -  I 

P.,.(G) >~ 
l '  = 0  

p.,.(a(,,- i) > rot') e -=P 

• Z Y, Z 
q'>( n -  I)(AJI ' .i,n. T )  

(5.5) 

P , , - L ( X  ('' 11 = a~("- I) Vs  ~< T)  ( 5 . 6 )  
-- s ~ s 
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Let  us n o w  c o n s i d e r  the  case  i = 1. W e  have  

P,.(A';I G) <~ P.,.(AD I G) + P,.(Ao n A~ I G) 

with  

Ao : =  { t ,  > a ('' - 1) > t ,e-(a/2)/s}  

W e  r e m a r k  t ha t  { a " -  1 > t,,} c~ G = ~ .  
W e  can  e s t i m a t e  f rom above ,  b y  us ing  the s ame  e x p a n s i o n  used  to  

e s t i m a t e  P, . (G) ,  the  fo l lowing  p r o b a b i l i t i e s :  

e . , ( A ~ o n G )  = ~ .  Z P.,-( { or~ > t} ~ { X i , " - " = z " - ' } )  
g < the -lu/211j .Tn- I Ent!,~j- I1 

• 2 
T dpin-llE 

(b{n - I I{ Xn" tat, T)  

p _ , _  ' v o ' - ~ > - c b l " - I ~ V s < ~  T )  . I ~ A  s - -  ~ s  

<~ ~ P _ , . ( a ' " - ' > > t )  
t < Ine -la[2)fl 

Y. X Y. 
.a~- I ~ m!:~- I) T qgn- I~E 

. r I I(..:.,. ,n T) 

P_,-, (Xr ' - ' )  = ~b]."-" Vs~< T) 

so t ha t  

Y~, < ,,,:,,,ma P,.( a ~  l ~ > t) 

P( A ~jl G) ~< ~',"/="'o- I p, . (cr l .  - 1~ > rot ' )  e -  ~a 

~. ,<,. , . - , .ma P.,.(c/"-I)> t) 
<~ 

~,,,/. ,e-,~ p , . ( a l . -  I i >  rot ')  e - ~ #  
t ' f f iO 

e - l a / 4 ) / J t  n 

where  c ~ ' ~ 0  as  fl--* c~ a n d  we used  P r o p o s i t i o n  2.1 to  get  the  las t  
inequa l i ty .  

Let  us c o n s i d e r  the  p r o b a b i l i t y  P , . ( A o c ~ A ' ; I G ) .  Since for  a n y  
t ~ [ t,,e -~a/2~p, t,,] we have  tha t  

p , . ( l  7 , , -  ' T . e - . a }  " . . . .  ' T,,e~p} ) I ~"a i'-i)- 1 < k.) ' i /_ ,aq, , -  i ) _  1 ~ 

~ p . x . ( 1 7 n -  I 1 7 , , - 1  e(a/2)13}  ) I ~ ' "  - ~) - 1 < t .  7",, _ I e -( , , /2)~ } u I ~,~(,, - ') - i > t .  T ,  _ ,  
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Then, proceeding as before, we have 

P , . ( A o n A ~  c~G) 

t n - -  1 

<~ E Y'. P x ( { a ' " - ] ' > t } c ~ { X ~ ,  " - ' ' = z ' ' - '  } 
t = t n e  -{a/2lp - n - I  I n - I )  

n [ { Z ' t - '  < t .  T , ,_ , e  -`~ u { Z t - '  > t .  r l ,_,e("/2 'a}])  

• E 
T ~bqn- I) E 

q'~(n - l)(.xaa, yn,  T )  

P . . . .  I ( X ' { g n  - -  ' ' = ~bi./' - -  ' ) V S  ~ T) 

It is not  difficult to extend the same argument  of  the p roof  of  
Lemma 2.4 to obtain, for any t E N, the inequality 

Px( t .  T,,_ l e -(a/2)p ~< Z ,  - ' <~ t .  T, 1 _ ]e ('/2)p)/> 1 -- e -kp 

with k = k ( a ) ,  and thus we can prove as before that  P,.(Aoc~A~IIG) is 
exponentially small. 

Let us now go to the case i - -2 .  We first observe that, by Lemma 2.3, 
since 

:~" 7,J, c~ ~" - l = g -  . j ,  

we have that  7 , , -  ...~,._,, >~ r ( Q : : ;  thus, by using the same expansion used in the 
case i = 1, we have only to prove that  P,.(v(Q.,,,: < ~.-')-71'- ] ~Jx is exponentially 
small in ft. 

We have 

j "-In - -  1 P..( r(e.e,v. -- ~ ~,.-,1_ i) 

m n  - -  1 x 

+ ~ P:(X~s,._,,er ) (5.7) 
zEIQ[~,n(Ui~j Rci)) 

To estimate the first term in the r,h.s, of  (5.7) we first note that, by the 
definition of  C : - ,  and Q,.., there exists at least an index i o ~ J  such that 
Rcio ~ Q :  and a sequence j j  = 1 ..... j~ = i0 such that 

RcjnCj,+, ~ (5.8) 
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On the other hand, since 

Cic~"~l-,~ for any i ~ J  
m x ,  

for any i ~  {Jl ..... jk} there is a sequence satisfying again (5.8) starting with 
i and ending in j~ ..... j , .  By iterating this argument we can conclude that 
we can choose a sequence of graphs g*,, i~ J ,  minimizing, respectively, 
Wc, such that 

U g},=: go.,', (5.9) 

is a Q.,~-graph. As was noted in the proof of Proposition 4.2, we have, for 
any g~  G(Q.,,) 

W(g)= ~ W(g[-~,) 
i E . 1  

and since g [-c, are C~-graphs, we have 

W(g)>~ ~ W(g~,)= ~ We, 
i ~ .ff i ~ . 1  

This implies that each Q,~,-graph minimizing WQe, has the form (5.9) 
and thus 

Ra,.,, c U Re, (5.10) 

By means of the FW results (see Lemma 3.2 and Proposition 3.2) we 
can then estimate the first term in the r.h.s, of (5.7) with an exponentially 
small quantity. 

The second term in the r.h.s, of (5.7) can be estimated by Proposi- 
tion4.5 if we remark that, by construction, each point in (O=v,)"n 
(Ui~..,, Re,) belongs to 

Let us now consider the case i = 3. As in the case i = 1, we define an 
auxiliary event 

A~ := { el"-~1~< e "a} 

where q is arbitrarily small and 

.?l,,-11 := min{ t > crl,,- 11_ 1; X~,"-t~M c'-ll} 
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We have 

Px(A;  n G) <~ P.,.(A'f n G) + P,.(A'~ n A;  n G) (5.11 ) 

By using the fact that the event A~ depends only on the process X u'- t~ 

after the time a u '-  ~ -  1 and by using again the expansion used to estimate 
P,.(G), we immediately obtain a superexponentially small estimate of the 
first term in the r.h.s, of (5.11 ) by means of Lemma 2.2(ii) applied to the 
chain X~,"-tL The second term can be estimated from above as follows: 

t n -  1 

P. , . (A;nA'3nG)<~ ~ ~_, P . , . ( { a " - " > t }  n { X ' , ' - " = z " - ' } )  
I ~ 0  ~r--I  ~ 177(~ - I  ) 

• Z Z P:"-'(X'J '-̀,-dgu'-t'vs<'-T)- - . , ,  

T<~(atP ~ n - I }  E 

�9 ~',- "(.,~', y,, T) (5.12) 

where 

~r - t i(x", y", T) 

{~ E q,t,,-,, . . . .  = ( x ,  y ,  T) such that 

i t , , -  I ) 1 ~  Tin-- I )l ~lt ~ l [o.r] ,~-, > min 
~Otn- I I ~ V~ln - | ~ ,ds, .W, T )  * [ 0 .  T ]  ~, "P' ! 1 

and so, by applying Lemma2.1(iii) we obtain an exponentially small 
estimate for P.,.(A31G). 

In the case in which there exists z" such that PU')(x", z") ~ 1, we can 
also prove that P,.(A~41G) is exponentially small. In fact, in this case, by 
Proposition 4.8 we have that 

Vc,,,,-, = V1 + "'" + V,, 

and, with probability exponentially near to one, 

r c,,,,:-,, • Z'~7,2,,_, 

The proof thus follows immediately by using Proposition4.3(iv), the 
Chebyshev inequality, and the expansion used to estimate P,.(G). I 

R e m a r k .  We note that, if PUn(x",y") is exponentially small, i.e., if 
the transition x " ~ y "  is against the flow, with Theorem 5.1 we provide 
estimates from below of probabilities conditioned to an event G of 
exponentially small probability. This is the main difficulty of this theorem 
and for this reason we used explicit expansions in the proof. 
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The case Pl"l(x", y") x 1 is easier. Indeed the process is "falling" to y", 
and we are conditioning to an event of probability of order one. The results 
proved in Theorem 5.1 can be stated in this case in the following form: 

T h e o r e m  5.2. Let x", y"~ S ~") be such that P"~ y " ) ~  I. If we 
define the events 

O I := {T,,e-~'a<~r~Q.~c~ T,,e +~p} 

D2 := { Vy e C.,J, 3t < r~Q.,,,~.- such that X, = y} 

D 3 : =  { X'~,Q., V ~ ~ ,  and starting from X~qe,,),, the process falls to y"} 

G := {X(0 '1) = x  n, X(l n, =ya}  

then for any x ~ g ~  we have 

Px(Dl c~ D2 n D3 I G) >~ 1 --e -Kp 

for some K >  0 independent of ft. 

Proof. By hypothesis, P.,.(G) = P~ y") x 1. 
By Proposition 2.1, since the states in g~, are the most stable states 

contained in Q.,~, we have immediately 

for some K > 0. 
Since 

P(D' i IG)<e - m  (5.13) 

rl c,,,,.,7-,~), ~< r~Q.:r 

by Proposition 4.3(iii) we have that 

P_,.(D~IG) <~ e-KP (5.14) 

for some K > 0. 
To get P(D'~IG)<e -Kp we notice that the probability that the 

process, starting from X~o.,.,,c, visits •'__'o before ~.~, z,  ~ S "1, z" r y", when 
conditioned to the event G, is zero. By using Proposition 4.5 we conclude 
the proof of the theorem. | 

Remark. The main difference between the statements of Theorems 
5.1 and 5.2 is that in Theorem 5.1 we were considering times of the form 
Z~'-1, in order to be able to iterate the theorem itself to obtain a complete 
description of the transition x" ---, y" in terms of the original chain X,. 
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Here, in Theorem5.2 we are considering times of the form rto.~,)r 
since, as we will show in the following theorem, we will consider the itera- 
tion on the stability of the state to which the process is falling. Let x " � 9  S ~"~ 

and x �9 ~ '~ .  

R ( n - -  1) - v n - -  1 . . . ,  X ~  - 1 .  Theorem 5.3. Let ~ ,  = . , |  For  each of these states 
x'] - | there is at least a path ~r ~(x 7 - i ) = { ~ , -  J~} k = o...., r in S I ' -  1~ with 

~(n- -  |) .n - - I  ~ (n - -  l) ~ ( n  
0 : X i  ~ Y'T ~ ' " x  ~ -  I), P ' " -  "(4;~"- ", q~ '+ ," )  ~ 1 (5A5) 

We define the following event: 

, , - ,  , ,-1 4;I . . . .  1) E := {there exist x i �9 Be, and I J(x7 

~ n -  1 satisfying Eq. (5.15) such that x �9 ~ ,,_,, 
.X" i 

, - 1  ~ 1 7 6  Vs = 0  ..... T} x falls to x i , and X ~  - T~,, 

Then we have 

P . , . ( E I x  falls to x") >/1 - e -xp 

P r o o s  The proof  of this theorem is an immediate consequence of 
Proposition 4.5 and Lemmas 2.1 and 2.2. 

6. THE TUBE OF EXIT 

We come now to the problem of the determination of the tube of exit. 
We will use the renormalization procedure and the results of the previous 
section to define the tube of typical exiting paths in terms of a sequence of 
permanence sets (see Definition 5.1). 

We use the notation established in the previous sections. A generic 
state in S ~" will be denoted by x", and a path in S ~'~ will be denoted by 
q6". Since in this section states of different spaces S ~'~ will appear at the 
same time, we do not simplify the notation by omitting indices. With 
boldface lette~%, e.g., y, we will denote sequences of states not necessarily 
belonging to the same state space. 

Let Q c S be an arbitrary domain. As in Proposition 2.1, we can sub- 
stitute our original chain X, with the chain X, Q defined by (2.30). Let 
N = N ( Q )  be defined by (2.31). We omit, from now on, the superscript Q, 
since only the chain 2"f will be considered in the rest of this section. The 
characterization of the typical exit of the chain Xt, m from the domain 

822/84/5-6-9 
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Q c~ S tm is an easy problem since this domain does not contain stable 
states for the chain Xt, m and so, with large probability, the chain XI u~ exits 
from Q n S ~m in a time of order one by following a path falling to Q~. 

For any x~VEQnS ~'v~ we define the set of typical exiting paths 
starting from xU: 

~"V'(x'V, Q") := ~) {~bo u, ~b~ ..... ckJe S'U): q~= x N, ck~e Q", q~ r M 'u' 
T = I  

Vt 1,..., T -  1 tm N 0} = and Ito.rl(~b ) =  (6.1) 

By Lemma 2.2 we have the inequality 

P,.~(3q~N E ~<"'~(x u, Q"): X~/v> = q~,uVt <~ T(~bN)) > 1 - e  -ka (6.2) 

where T(~b N) is the first hitting time to Q' of the path ~b N. 
This can be called "N-descent to QC,, (in the reversible case the Nth 

renormalized energy function is decreasing on the paths in ~Wm(x N, Q")). 
As noted in ref. l l, Section 2, (6.2) gives us a first knowledge about the 

exit of the chain X, from the domain Q, providing, in particular, the results 
obtained by Freidlin and Wentzell about the mean exit time and the most 
probable exit point. A first preliminary, quite rough version of the exit tube 
starting in ~ ,  is thus given by the following union of paths: 

:= [_) J(~b N, T(~bN)) (6.3) 
~t~ E 'P"VI(XAt, Qr)  

where G-(~b N, T(~bA')) is defined in (2.19). 
On the other hand, each descending path ~bN~ ~tm(x~r QC) can be 

analyzed in terms of paths of the chain X t~r LL An N-descent to QC for the 
path ~b N will be a sequence of descents and ascents for the paths on the 
smaller scale N -  I. 

Now we want to use the results of the previous sections to give more 
details on the typical exiting paths, in order to describe these sequences of 
descents and ascents up to the first (better, zeroth) level of the renormaliza- 
tion procedure (corresponding to the original chain). In this way we want 
to narrow the tube J -  as much as possible keeping a good control in 
probability. This will be achieved by describing, for each path {~b u} r=~ 
appearing in (6.3), the behavior of the original process X, on the time 
intervals corresponding to each transition ~b~ ~ ~b~+ I at level N. 
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We can proceed as follows: by applying Theorem 5.1, we can associate 
to each transition ~bff--. ~b~+~ a permanence set Q ~  and a set of paths 
~u tu -  ~} in q~(S t u -  t~) defined by 

~'t(N-1)tm(N--l)t zN , 17"I~N(N-- l ) )  
V'i ~i+1 

0 {~o~-l, ~ -I . . . . . .  : =  ~ _ 1  ~ s,~-, , .  ~o~_, ~'G~-", 
T = 1  

~ - ,  ~ -  . ~ - , ,  ~, - ,  r  =,,,,f+, , Vt= 1 ..... T -  1 and 

r ~ , - , , , . ~ N - , )  = ~'~"(4q, 4 ,L,  ) + vN} [O ,T]  ~W (6.4) 

To each transition at level N - 1  we can associate, again by 
Theorem 5.1, a permanence set Q,7-~ and the set of paths 
~u~N-2~t,aN-~ ,AN-~ where, for any n < N  and for any pair of states in ~,'/"k , 7 " k +  1 ," 
SI"~: ~'~, 4~'~ +1, we define 

~j (n - - I ) (m(n- - l )  ( n - - l ) )  

f ~ n - I  t a n -  ... t h n - I  S O z - l l .  t h n - I  :~--'~ I~/ '0  , 5"1 I ' " / 'T  ~ " "Y0 E m q ~ ( n - - l ) ,  

T = l  

~ T  1 ( n - - l )  n - - 1  " -  ~m~§ ,~b, ~ M r  ..... T - l a n d  

I . , - ,  I~.~t,-,) = A,.,,/.~,, - V.} [0 ,  T]  ~,'$ " - -  ~..q- k., ~bk + 1 ) "1r " (6.5) 

By iterating this argument we have that the transition ~ b ~  ~bff+ 1 is 
described by a family of sequences of permanence sets, one sequence for 
each choice of possible paths at each step of the iteration corresponding to 
lower and lower levels of renormalization: 

Qygo, QyT, ..... Q~L 

For n; = 0, Q:'7' reduces to the single point Qy,,i--_y,~ and Cy~=y i .~ 
_ _  n o  nL Let us analyze the sequences Y-Yo,...,Y/. arising from the above 

iteration. 
At each step of the iteration we insert between two states of order n 

a sequence of states belonging to S <'-ll.  For  this reason we give the 
following definition. 

Definition 6.1. We will denote by y" a sequence of states 
a ni ( y ) ;  S ~'~), i =  1 ..... T, such that n~>~n, V i =  1 ..... T. Given y", a sequence 

822/84/5-6-10 
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yn--, is called a refinement of y" and we write y " - '  r e ly"  if the following 
two conditions hold: 

(i) y " - '  is a set of states in {S~'"~}. with , ~ > ~ , - I ,  containing the 
set y". 

(ii) It is obtained by inserting on the r.h.s, of each element (y")'/' with 
n~ = n a sequence yn - ,  of elements of S " ' -  ~ such that there exist x " - '  and 
x" with 

�9 tl ~:tal4. I x " -  l e ml,", -l~ and d.,~, ~ J ~y%+, 

and the sequence 

, - ~-..(yn],,,i , I l l  M,  

Such sequences y~'-~ that we add to y" in order to get y " - '  will be 
called the reJhl#lg paths of y"-J .  

Each sequence y arising from the above iterative application of 
Theorem 5.1 will be a refinement of a refinement ... of a refinement of an 
yN  6 ~ - I I N I ( x N  ' Q,). 

Now for any given constant a > 0  and for each state x"eS""  we 
define, as in Theorem 5.1 the following events (sets of paths): 

t ] ~ i n  I I ( n  1 I i1 - -  I A l ( x " . a ) : = { r  o em.,~ andZ~,,,-i,_le(T,,e "lJ.T,,e "/J) 

t / ~ i n  - [ ) f~  i n  - -  I ) 7 n  - -  ] ~ 7 I t  - -  l A2(x") "= {r e r ~'o m,~, and z-~ n.,-II >..- ~'(Qx,,), L~,-;I.-IJ 1 } 

where 

0 - In -  1 ) ~  O.(n--l)(~b)-___T ( n - l l  
. (ntlxn I I l ~  

The first step of our iterative construction is given by the following 
expression for Jx (x  N, Q"): 

~-N (XN" Q")= U ,~--(yN T(yN)) (6.6) 
yN ~ ~ptN)(.x.N" Q,') 

Then we define 

"~"-N--1( x N ,  Q c  a )  [ =  U U ,N-, 
yN e yN - I rq/-yN 

~ c N l ( x  ,v, Q,') 
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where 

.Y[y,~ y,~-, := {r �9 ~ , , ( x  N, Q'): for each transition 

~b~N) ,~IN) i : (yN)i___~ = ( y n ) , + l  " / ' i+  I 

the path r on the corresponding 

interval of time [ Z  N, Z~+~] belongs to 

A l((yN)i, a) ~ A2((yN)i) and r �9 .Y-(yi n -  l, T(y[' ')) 

V t  ) Z / N "  7 N -  | } T /~r I I  __ I J" 

where y ~ -  ~ are the refining paths of yN-  ~. 
By iteration 

.~,,(S", Q', a):= 

with 

U U --. U 
yN E yN - I refyN yn rel-yn+ I 

tp~ Ull.x., v, Q, ) 

G N ,  yN - I...., yn : : { ~b �9 *~yN yN - I,.... yn+l : f o r  e a c h  t r a n s i t i o n  

of a refining path of 

y.+l:-i(b(" + I ) -'--" (Y~+ I )i ---~ d~l'' + 1 ~ = (y~,+ I )i+ " t ' i+  I I 

the path r on the corresponding 

interval of  time belongs to 

A l ( (y"+l) i ,  a) n A2((y"+l)  i) and r 1 4 9  .7-(y~, T(y~,)) 

Vt > Z~. +1 + Z'~A,_,,_ i} 

where y~, are the refining paths of y". 
Finally we obtain 

Q,,.):= U U ... U 
yN q yN - 1 re/yN yO re/-yl 

~P~X)ix'V, Q"I 

= U U . . . U  
yN E yN- I rel'yN yO rs 

gs"V~x,V, Q' ) 

7_ , yN, yN-l,...,yO 

{ r visits the ordered sequence 

of se ts  Qyo and in each set Qy, spends a time in 

,at, ,~ -- off [ l,,,e , T , y  "l' ] } 

where we define Q,.,, = x ~ and To = 1 if x ~ s S. 

(6.7) 
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A first result on the typical exiting tube can thus be stated as follows: 

T h o o r e m  6.1. For each positive a there exists a positive constant 
K such that for each sufficiently large fl and for each x e g,.Y~ we have 

P.,.(X, s 9-o(X N, Q", a) ) >1 1 - e  -Kn 

Proof. The proof follows immediately by Theorem 5.1 if we note that 
for some positive K', K" 

P.,.(X, eY,,,(x", Q", a)) 

= Z Z .- .  Y, 
yN ~ yN - I r(fyN yn+ 1 refyn§ 2 

tI.'~NllxN" Q,') 

x P.,.(X, e J , ( x " ,  Q", a) [ X, e Yy~...y,+,) P.,.(X,e ~yN...y.+,) 

>/(1 - e  -Kvl) P.,.(X, e J,,, + ,(x", Q", a)) 

and P.,.(X,e.Y-N(X", QC, a))>~l - e  -K"n by (6.2). I 

Let us now make some remarks on this theorem. 
Given the sequence y = yO, consider each element ),}!i belonging to a 

portion of the sequence where n; is monotonically decreasing, i.e., such that 

ttj t;j I d ~ ,, c g  ,- , (6.8) 
. y .,%5 

By construction, (6.8) implies that 

n; <n j_  1 and O . , . c  0. , . - ,  ~ , j ;  ~. , jC I 

This means that the information given by the event A~ n A2 

r @  ~ T,,j (6.9) 

can be considered as a "negligible correction" to the statement 

tO:6-, ~ r,,,_, 

Then from any sequence of the form 

y e  U U "'" U yO (6.10) 
yN ~ yN - I rel-yN yO rgfyl 

If#i NIl xt" QC) 

we can extract a new sequence y' in which the terms satisfying (6.8) have 
been canceled. 
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Moreover, by construction, each element yTJ appearing in y given 
by (6.10) either is in St"J~\MC"J~ [see the definition of the sets 
~ut"~(x"+J,y"+~)], and so by applying Theorem5.1 without losing in 
probability we can also include the event A4 in the definition of our tube, 
or yj.'J is the starting point of the path starting at Y}'~I, i.e., (6.8) holds. 

Following this remark let us extract from the sequence y sequences 
{y"}; in which (6.8) holds, or, more generally, the maximal segment of y 
in which there is a term of the segment such that its permanent set contains 
all the permanents sets of the segment: 

D e f i n i t i o n  6.2. Let {y"}; be a maximal segment of y: 

nil+ I nm i 
{y"}, := { y;'", Y,,+, ..... Y,,,} 

such that for a n y j s  [l;, mi] we have 

Q,,Tjc_Q~,,.k, for some ki~[li, m;] 

Let y' be the sequence obtained from y by replacing each segment 
{y"}i with the unique term y~'. 

This means that by considering the sequence y' instead of y, we have 
canceled all the "negligible corrections" like (6.9). 

Def ini t ion  6.3. Given a sequence y appearing in (6.7) and the 
corresponding sequence y' obtained according to Definition 6.2, we call Qy, 
the standard descent outside Q emerging from x N. 

With Theorem 6.1 we have described in full detail our exit; however, 
with the refinement procedure we have obtained at the same time two 
different kinds of information. First of all, we have obtained what we call 
primary information (or level-one approximation of the tube of exit): the 
family of ordered sequences of different permanence sets visited by the 
process (namely the set of standard descents Qy,) and the typical times 
spent by our process inside them. The secondary information (or &vel-two 
approximation of the tube of exit) concerns further details about the history 
of the process inside each cycle that it visits when it stays inside s o m e  Oi 
in Qr" It will describe the first descent to the bottom of the cycles and the 
first excursion outside them. 

Let us discuss in some more detail the primary and the secondary 
information on the tube contained respectively in the parts y' and y" of the 
sequences y appearing in Theorem 6.1. 

We want to characterize the standard descents Qr" We denote by co; 
the subsequences of sets in the sequence Qy, coinciding with single states 
and by using a simpler enumeration of the permanence sets we write 

Qy, =-- Q1, col, Q2 ..... Qk, cok 
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Proposit ion 6.1. Q],cot, Q2 ..... Qk, cok is such that: 

(a) Q i n Q i + l = f g v i .  

(b) co i are downhill paths [i.e., cO=Xl ,X2 ..... x , ,  satisfies 
zl(xj, x j+~)=0,  V i = l , 2  ..... m] going from Q; to Qi+~ in the following 
sense: if coi-x~, l ,  xi,_ ..... x~ ..... then x~.j is one of the optimal exit points 
(belonging to the set Yx of Proposition 3.2) of Q~ and xi.,, ~ Qi+ ~. 

(c) cok goes from Qk to Q". 

Proof. We know that yN~ ~UN(xN ' Q,.), i.e., A~m((yN)~, (yN)i+l)=0.  
We will iteratively prove that if A~"l((y*);, (y")~+~)=0, then the refining 
y~,-i, i.e., the subsequence of elements in S ~''-~ belonging to y between 
(y")i and (y")~+ ~, can be divided into three parts: 

(i) A first segment, say Y'i'.~ j,..., Y"-i,,,, l, in Q~.v%. 
n - -  1 y n - -  I ,  (ii) A second segment, say Yi, s,l+ ~ ..... ) ;./ downhill in .~ty,~. 

, ( n  - -  1 ) ) n  - -  1 (iii) The last segment )~./+~ ..... ) i.r in Q,:.,~,+ . 

We notice that each of these parts can be empty. The first and the last 
segments consist, respectively, in the ascent outside Q~y% and the descent 
to the bottom of Q~y%+,; they will be studied later when we analyze the 
secondary information. The only remaining part in our level-one analysis, 
i.e., in the sequence y', is part (ii), and so the proposition follows once we 
prove the iteration step. 

We know, by the definition of y, that y~'-1 is a path going from (y")~ 
to (y")~+~ and minimizing the functional I ~''- ~1. More precisely�9 we know 
that l~"-l~(y~'-l)=A~l"((y")~, (Y")~+t)+ V,,= V,, and, on the other hand�9 
each path in S ~''-~ exiting from m ~  ~ gives to the functional I ~''-~ a 
value larger than or equal to V,, and so the part of the refining path outside 
Q~y% [the second segment (ii)] must give a zero contribution to the 
functional I I' '- ~. II 

Definit ion 6.4. Given a standard descent Q~, ~o~, Q2 ..... Q,, ~o, 
emerging from x e g  'v we say that our process follows regularly Q~ ~o~, A- N �9 

Qz ..... Q,, rok if: 

1. It stays inside Q~ during a suitable random interval of time, 
exponentially long in ft. 

2. The length of this random interval of time as well as the way our 
process spends its time in Q~ is specified as follows: during its permanence 
in Q~ our process visits one or more cycles CL, belonging to Q~. When it 
enters inside one of the cycles CLk it has the typical behavior described in 
Propositions 3.1, 3.2, 4.3, and 4.4; in particular it visits all the points before 
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exiting from a point y minimizing the quantity WQ(x, y )  in (3.8); it stays 
in Cl,k a random time logarithmically equivalent to its expectation given in 
(3.10). 

3. Then the process gets out of Q~ following co~. 

4. Subsequently it enters Q2 and continues as before. 

5. Finally, following cok, it gets out of Q. 

Our main result about the level-one approximation is contained in the 
following theorem, which immediately follows from Theorem6.1 and 
Proposition 6.1: 

Theorem 6.2. With probability tending to one as fl tends to 
N infinity, if at t = 0 our process starts from x ~ g,.N, the first exit from Q 

follows regularly one of the possible descents emerging from x. 

Sometimes the primary information can be completely simplified. This 
happens, for instance, if Q itself is a single cycle. 

In this case the primary information clearly reduces to a triviality: we 
have that the descent consists only in the set Q itself and the typical point 
of first exit in OQ. In other words, our primary information in this case is 
almost empty since it only gives us the typical random time spent in Q and 
the typical point of first exit in OQ. As far as the problem of the determina- 
tion of the tube of exit is concerned, in the present case only what we have 
called the level-two approximation starts to be interesting. 

Indeed the natural question that arises in this case concerns the typical 
first excursion outside Q, i.e., the path 

where 

XOxN, XOxN+I,'",  XrQc 

0,.,v = s u p {  t < rQ~: x ,  = xu} 

The level-two approximation, in particular, will characterize this first 
excursion outside Q. 

Let us consider the simplest case in which Q is a cycle whose bottom 
is made up of. a single point x u. We have yN = x N, z N for some z N e Q" with 
zJ (NJ(xN,  •N) ~. 0 a n d  

yN --1 = xN, xN--1,..., X N -  1 zN 

N - - I  . N - - 2  ~ N - - I  ~ N - - 2  . N  
y N - 2 = X N ,  X ' ,X t .  l ..... X ~ T , , X y - - I ,  .N--2 N--2 - - -  X2,1 ~'"~ X2, T2 , '" ,  "~T ~ ~'T,I , '", ~" 



1034 Olivieri and Scoppola 

The whole sequence y arising from the refinement procedure, except for the 
final state z N, satisfies the condition defining the sequences { y"} ~, since in 
this case 

Q.,~ ~ Qy?, VyT' e y 

On the other hand, if we want to get information about the first excur- 
sion, i.e., about the behavior of the chain in the time interval [0.,.N, re,. ] 
(which is exponentially smaller than the time spent by the process in Q), 
we are exactly interested in the "negligible corrections" contained in { y"} i. 
Thus we can ignore the first term x N in the sequence y, describing exactly 
the long time interval spent in {2, and we can consider, as before, the 
remaining sequence y \x  N. Again we can extract from this a sequence 
(y\xU) ' (see Definition 6.2) and we can apply the analysis developed up to 
now to this beheaded sequence. We obtain in this way a sequence of per- 
manent sets QIy,,.~I, describing the ascent from x N to Q". 

In the reversible case this ascent can be characterized by a sequence of 
disjoint sets Q's connected by uphill sequences cot. In the general nonrever- 
sible case this result is no longer true and more and more complicated 
paths ogi (partially uphill and partially downhill) will appear in a standard 
ascent. On the other hand, we notice that in the case of standard descents 
the simple feature of the corresponding co,- (only downhill paths) valid in 
the reversible case is preserved in the general case, as follows from Proposi- 
tion 6.1. 

The procedure of beheading applied to the discussion of the case when 
Q is a cycle with a single bottom x N can also be applied to describe the 
segments {y}~' in the case of a general Q, i.e., to obtain the secondary 
information. 

Let {y"} = {),~J} ~.', and let k be such that 

Q.,,,kk ~_ Q;~, for each j =/ ,  .... m 

Since in each standard descent each element of y appears only once, in 
each segment { y"} there is only one k satisfying the previous inclusion. We 
can thus define 

yd = { y~.'J} j=C....k_ l and Y~ = {Yj~J}j=k+, ........ 

so that {y"} --Yd, y~k, y~, where Ya and Ya correspond respectively to the 
c descent to the bottom y~  and to the ascent from y~' to Qy. For each of 

these segments we can extract again the subsequences (Yd)' and ( y j .  
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In other words, the level-two approximation on the tube tells us how 
our process reaches for the first time the bottom of the visited cycles C~.k 
constituting the permanent set Qy? and how it performs its first excursion 
from this bot tom to Q~(,7,. Between these relatively rapid "transients" the 
system will typically spend a much (exponentially in fl) longer time perfor- 
ming random oscillations in C~.k visiting many times all its points before 
exiting. Of course for the degenerate permanence sets given by single points 
the secondary information loses any sense and we have to stop our 
analysis. In general we can continue our description of the tube of first exit 
trajectories by specifying the level-three approximation, namely by describ- 
ing the first and last transients of the history of our process when it enters 
some smaller cycle. This means that each segment {y"} contained in (Yd)' 
and (y,,)' can again be analyzed in the same way. 

Up to now we have considered a starting point x ~ ,~ff,. We now dis- 
cuss the case of a general starting point. 

For  any set Q, let N =  N ( Q )  be defined as usual [see (2,31)]. Consider 
the covering of S given by the union of the generalized basins of attraction 
of all the points W IN} ~ s(N): 

s=  U ~(x'N') 
.x.tN)~sqN) 

Given any x e  Q, we look at an x (g~ such that x e ~ ( x ~ m ) .  If some of those 
x ~x~ do not belong to Q, there are possible typical first excursions outside 
Q starting from x which are just descents to x"V~ Q. 

Suppose now that there exists at least a point x (g~ e S ( m w  Q such that 
x e ~(x(m).  We will show that in this case we can distinguish a first interval 
of time in which the process falls to x N, and a second, much longer interval 
of time in which the process exits from Q following the description obtained 
above, since we can now consider x g as starting point. This means that in 
order to complete our description of the typical exiting tube we have to study 
this first transient descent to the bottom of a basin of attraction. 

More precisely, let x " e S  (''~ and x ~ ' ~ .  We now apply iteratively 
Theorems 5.2 and 5.3 to obtain the tube of typical paths starting at x up 
to the first fall to x". 

The sequence of states y in this case has the following property: 

(yN- ' )o  eB!N-  l) 

and there exists x N -  l e m ! ,  N -  i) such that 

the path { y N - l  ,,'~N--1} ~ { ~b(N-I }} i=T(q~iN-I')1 ~ ~: --~,~I'~('~(N--l}).. 

(N--I) ( N - - I ) , t ] ~ { N - - I ) ] _ ~ I  , I (r (6.11) "ri+l  j - - v j  
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Moreover, we can define the sequence of states arising from this itera- 
tion by defining a new refining as follows: 

D e f i n i t i o n  6.5. For each n < N - 1 ,  y" is a fall-refinhTg of y .+ l  
and we write y" f -re f  y .+ l  if y" is obtained by inserting on the 1.h.s. of each 
element (Y"+~)i a sequence of states in St"~: y~' such that there exist 
.xi'"+ ~, .x~ -" such that 

,, (,,) ~,,+l ,, , (y~ , )0  e o ( , , ,  X i ~ l n . v n + l ,  tO.x.n+t QSO~(yO+ )'i,, - -  L)  .x..~ + I 

and the path 

{Y i ,  x ;  } . . . .  e{{qJU')} r(c'"''ecI)tS''''~'i=, , ,. I u,)(r " / ' " ' )~ = O} y i + l ]  

As before, we can define the tube 

~-O(x'xN,  a): '~ U U "'" U ~ ' % N ,  y N - ,  . . .  y0 

yN - I yN - 2f-tel yU - I yOf_re f yl 
satisfying (6.1 l ) 

= ~O(X, X N, a) 

:= U U ... U 
y N -  I yN  - 2f_r< f yN - I yO.f_,.r y l  

satisfying (6.11 ) 

{ r visits the ordered sequence of sets Qy0 

and in each set QyT' spends a time in [ T,,e -"/J, T,,e "p] } 

Analogously to Theorem 6.1 we can prove the following result. 

T h e o r e m  6.3. For any a > 0 there exists K >  0 such that for any fl 
sufficiently large and for any x ~ ~ ~.iu 

P.,.(X, ~ ~'-(x, xN)) >1 1 -- e-KP 

If 

- - N  x e ~.,.~, i = 1  ..... j (x)  

then 

/ j( x ) ) 

P,. ~X, ~ U J-(x,  x N) ~> 1 - e -x/~ 
X i ~ l  

By combining Theorems 6.1 and 6.3 we complete our description of the 
tube of typical paths starting from each point x up to the first exit from Q. 
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Indeed, if x e ~'~.u for s o m e  X N ~ Q, then the typical tube is just made up of 
paths which are in Y-(x, x N, a) up to the time r~.u^, and from this moment  
they are in the tube ~-(x ~v, Q", a). We call it ~--(.~, x N, a)o~--(x ~, Q", a). If 

x6~,,,., i= 1 ..... j (x)  

then we have to consider the tube 

U ~--(x, x~, a)o J~(x N, Q", a) U J-(x, x N, a) 
�9 . . N 

i ~ [ l , . . . , . l i A l ] . x  i E Q  I ~ [ � 9 1  c 

Similarly to what we did before, we can extract from the final sequence y 
a sequence y' and distinguish between primary and secondary information. 

APPENDIX 

Proof of Lemma 4.1. 

The proof  is organized as follows: 

1. First we consider a graph g~2* and we construct a graph g on 
S tk- ~ satisfying property 2' of Definition 3.1 of B-graphs. 

2. As a second step we extract from g a Qk-~ graph on 
S'~-": g~7_~. 

3. We show that 

. 

5. 

m , k - , ,  W ( g ~ ~ ' )  W~2 + Vk IQkl Ok-, <~ = 

Given a graph g ~ ' * ,  we construct a Qk-graph on s~k': g~2. 

We verify that 

- Q,.-, - Vk IQkl 

From 3 and 5 we immediately obtain (4.20) and thus we can conclude 
that the graph _~k- I~ SQk-, constructed in 1 and 2 minimizes ,xflk-l~ ,, ok-, and the 
graph g~2 constructed in 4 minimizes W~). 

1. By Eq. (4.19) we have that Qk- ~ contains all the unstable states of 
the chain X~, k -  ~, say S ~k - ~ \ M  ~k - I I, and each state in m!,. k - t~, if x e Qk. 
Here Qk-~ possibly contains some states in r#,k-. ~ with x e D k, but not all 
of them. 

For any i s  Qk let nl~i k - ~  be the corresponding equivalence class in 
S ~k-l~. Given a graph g~2*, we can now construct a graph g of arrows 
starting in states in Qk-~ as follows: 

822, 84/5-6-11 
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(i) To  each a r row in g ~ * :  i ~ j  we associate a sequence of ar rows 
- k - !  E m l i k - - l ~  .x~-I--* . . . - - * x ~  - I  between states in S ~k-l~ such that  x l 

xk-- l_ . .~k-- t~  . . k - ~ e S I k - I ~ \ M ~ k - l l  and x~ - l  t c o , /  , .,/ , - ~ . . . - ~ . x ' ~ - l  is a pa th  
minimizing A~k~(i,j) [see (2.18) and (2.9)]. 

(ii) For  any equivalent  class m~i k-l~, i ~ Qk, let i~-~ be a state which 
is the start ing point  of  an a r row constructed in the previous step (i}. For  
any other  state in m~i k -  l~ we can construct  a sequence of  a r rows  between 
points  in n.tk-,i R j leading to i f - ~ .  Such a sequence exists by definition of  
~ k - ~  and for each such a r row the associated function zl ~k- ~J is zero. 

(iii) Since D k - ~ c  0.,-~ ok ntl(-~),  it may  happen  that  there are stable 
states in Qk-~ (for the chain X~, k -~ )  which were not touched by the con- 
struction (i) and (ii). They must  be equivalent  to some state in D k ~ and 
we can then draw a sequence of  ar rows from each of  them to a state in 
D k -  ~ with a zero contr ibut ion to the quant i ty  W(g). 

(iv) Let us now consider the states in Qk-1 which were not  touched 
by the previous construct ion,  i.e., which are not start ing points  of  any 
a r row constructed in steps (i)-(iii). These are unstable states. In this set of  
states we consider the equivalence classes with respect to the relation 

ck-~) k-~ For  each such equivalent  class, due to unstability, we can , C i . 

draw an a r row emerging f rom a state contained in it and ending outside it 
and corresponding to a zero value of the function zl t k - l (  Moreover ,  for 
each of these equivalence classes we can find a sequence of such arrows of  
zero cost and leading to a state in D ~-  ~ or to a state considered in (i), 
(ii), or  (iii) (i.e., s tart ing point  of  an a r row already drawn).  Inside each 

k - - I  equivalence class c; we can draw arrows between equivalent  states as in 
point  (ii). 

In this way we have constructed a set of  arrows, say g, such that  at 
least one a r row emerges from each state in Qk-~ and condit ion 2' of  
Definition 3.1 of  a Q k -  Lgraph  for the chain Xt, k -  ~ is satisfied. 

2. We will show now that  o s contains a Q k - L g r a p h :  g~ .=~ .  This is 
a s tandard  p roo f  (ref. 13, Theo rem 1). In fact by the previous r emark  we 
have only to show that  we can satisfy also condit ion 1 of  Definition 3.1 
of  B-graphs only by removing  arrows in oa. This can be done  with the 
following prescription: 

(a) In t roduce  in the set of  states S ~k ~ \ D  k-~ in an arb i t ra ry  order  
x l ,  x,_,...; set g o = ~  and i =  I. 

(b) Since g~_~ satisfies condi t ion 2', there is at least a sequence of  
arrows in g;_  l leading from x,. to some point  in D k -  ~; choose one of  these 
sequences; let x~ ~ x~ be its first arrow. 
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(c) Define g~ as the set of arrows constructed starting from g~_ t by 
erasing all the arrows exiting from xs different from x~--* x~. 

(d) Verify that gg satisfies condition 2' and every .xs.,j~< i, is the initial 
point of exactly one arrow in g;. 

(e) Make i ~  i +  1 and go back to point (b). 

The graph 

g~F- l ' -g~  for i =  IQk-ll  

is by definition a Qk-Lgraph  included in ~, since it satisfies conditions 1 
and 2'. 

3. By using the definition of A~k)(., �9 ) we have 

Wta-t) ~(k- t ) )=  A [k- )(i,j)<, ~, A(~-I)(i j) ~_, <W( ~ , ,g Q~--I 
i ~ j E g  I k - I  i~.jE~ Qk- 

<~ ~" (A '~"( i , j )+Vk)=W(~2+VklQkl  

4. Let g~=~)* be a Q~- Lgraph minimizing W~'~-_I ). For  each i e S  ~k~ 
let m~ k- ~ be its equivalent class. If m~; k - t ~ n  D k -~ = ~ ,  then ie  Qk and in 
g ( k  - t 1 ,  ~2k-~ there is a unique arrow exiting from m(~ k- t). Indeed, if there were 
two arrows exiting from m(~ k- t~ in g~7~)* we could construct a new Q k - t  
graph g,(k-t) by changing only arrows starting in m~i k-  t) with 

W i g " * - ' ) )  < = 

contradicting the fact that W~~�9 ~ is the minimum. 
This means that from the graph g ~ - l ) *  we can construct a Qk-graph 

on S [k~ by looking, for any ie  Qk, at the sequence of arrows exiting from 
it and at the first state in M (k- t)hit by this sequence. The set of transitions 
starting in states in Qk constructed in this way is a Qk-graph g~2, since 
g~k.~ )* was a Q(k-tLgraph. 

5. We have immediately 

�9 . 4 k )  

t ~ J ~ g Q k  

~< W(g~,::~'*)- Vk IQkl | 

Proof o f  Lemma 4.2. The proof is based on Lemma 4.1. 
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For  any Xo ~ ~",  let x ~ e S  ~1, x?~" E ~'~- ,..., x o ~ S  c ' ' ~ ' ' '  be the sequence of  
N O 

renormalized states such that ~ ' x 0 ~ g Vt = 1 ..... n. 
�9 " 0  

Let us first consider the cham at level n - 1 .  The stable states of  the 
chain X~, ' ' -  ~1 contained in MI~-", say ),'~- ~, yg - 1 ..... v~-  ~, are all contained in 

�9 ( : 1  - -  1 ) - 0 - " ~ " ' n I " an eqmvalence class m ,  , and one of  them colncldes w~th .,c o , Le, con- 
. . - ' o  . . 

tams the point  Xo. If  we now consider the quant i ty  

m ( : a  - 1 ) ( n - I )  . n - I  B n \ao 

(Rln- I we immediately obtain that it vanishes and each ~ . g  ~\.x-~ t)-graph on 

S ~''- ~ minimizing this quant i ty  has 0nly arrows ending in xg - t .  
Now, by iteratively applying Lemma4.1  with k = n - / ,  1= 

1, 2 ..... n - 1, and 

D " - '  , ,~o , - , i  . . . . .  , D k - I  ' \ x ~ - '  = ~ ~ , ;  \-~ o )c, = U 171!,k-, 
. ' c E  O k 

we conclude the p roof  of  Lemma 4.2 in the case of  a single state. 
The p roof  in the case of  a stable plateau p~"~ is exactly the same. 
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