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Markov Chains with Exponentially Small Transition
Probabilities: First Exit Problem from a
General Domain. II. The General Case
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In this paper we consider aperiodic ergodic Markov chains with transition
probabilities exponentially small in a large parameter f. We extend to the
general, not necessarily reversible case the analysis, started in part1 of this
work, of the first exit problem from a general domain @ containing many stable
equilibria (attracting equilibrium points for the = oo dynamics). In particular
we describe the tube of typical trajectories during the first excursion outside Q.
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1. INTRODUCTION

In this paper we extend to the general, not necessarily reversible case the
analysis, started in ref 11 for the reversible case, of the typical exiting
trajectories during the first excursion from a general domain Q.

More precisely, let {X'#} _,,, be a family of Markov chains
defined on the finite state space S, with transition probabilities P#(x, y)
depending on a positive parameter f and satisfying the following condi-
tions:

1. Ergodicity condition:
Vx,yeS In such that P'#"(x, y)>0

(where P'#)"(x, y) is the n-step transition probability).
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2. Property 2. there exist a function 4(x,y), x,y€S, assuming
values 4,=0<d,<d,< .- <4,, for some positive integer n, with
4, < oo and a positive function y = p(f), with y — 0 as f — oo, such that if
x#y and P¥(x, y)>0, then

exp{ —d(x, y) B—yB} < PPx, y) <exp{ —4(x,y) B+y8}  (L1)

We will denote by X ,(x) the Markov chain at time ¢ € N starting from
x at time 0; we will omit everywhere the index g, for notational simplicity.

We will denote by P, the probability distribution of the process
starting from x at t=0 and by E, the corresponding expectation. More-
over, given any set of states Q < S, we will denote by 7, the first hitting
time to Q-

1o=min{t>0: X, e 0} (1.2)

For any set Q< S we will denote by 0°= S\Q the complement of Q.

The aim of this paper is to provide a complete description of the
typical behavior of the Markov chain X, up to the time 7., for any set
Q< S, and for f sufficiently large.

We refer to ref. 11 for a general discussion of the problem. Here we
want only to recall that the results obtained by Freidlin and Wentzell con-
cern only the asymptotics for § large of the first exit time 7, and of the
first exit point X,,. The description of the tube of typical trajectories was
given by Freidlin and Wentzell(5) only in the case of a domain Q com-
pletely attracted by a unique stable equilibrium point.

It turns out from the analysis of many particular models (see, for
instance, refs. 7-10) that for general domains the typical escape involves the
permanence of the process in suitable sets during suitable random times,
exponentially diverging in f. This sort of “temporal entropy” is essential to
provide an efficient mechanism of escape.

In ref. 11, by exploiting reversibility, we were able to reduce the solu-
tion of the problem to the analysis of the energy landscape. In particular,
the decomposition of the space into special sets called “cycles,” which play
a crucial role in the theory, was simply obtained in terms of the energy.

In the present paper, to study the general nonreversible case, in order
to get the cycle decomposition, we are forced to use graphical methods like
those introduced by Freidlin and Wentzell.*®’

Our strategy will be to combine this graphical approach with an
analysis in terms of increasing scales of time introduced in ref. 12. In that
paper the long-time behavior of the chain X, was studied by constructing
a sequence of renormalized Markov chains X'V, X'?,..., X'/,... whose state



Markov Chains: First Exit Problem 989

spaces SV, S ., S, .. were composed by equilibrium points of increas-
ing stability. These chains provide a rougher and rougher description of
our stochastic evolution adapted to the analysis of phenomena taking place
in increasing scales of time (exponential in §).

If S=S© is the original state space, then S!' is just the set of stable
equilibria for the original Markov chain X,= X'%; X! is suitably defined
on SV, The set ¥ is the set of stable equilibria for X!’ and so on. In
Section 2 we will recall all the necessary definitions given in ref. 12. In
ref. 12 with this construction of renormalized chains, some results on the
typical long-time behavior of the original chain X, were easily obtained. In
fact to each exponentially long path of the chain X, a short path of a chain
X'M was associated, with a suitable renormalization index N.

However, a detailed description of the behavior of the original chain
X, during each interval of time corresponding to each transition of the
chain X'V was missing in ref. 12.

This detailed description turns out to be strictly connected to the
problem of the definition of the typical exiting tube. Indeed let N = N(Q)
be the level such that the (N + 1)th renormalized Markov chain does not
contain states inside Q: S'¥*"'~ Q= . This means that the first excur-
sion outside Q for the chain X'"' is a sort of “descent” along the drift.

As we already sketched in ref. 11, a first rough approximation of the
typical tube of escape from Q is given by the set of typical trajectories
followed during the first excursion outside Q by the chain X'\,

There remains the question of “reading” the result in terms of the
paths followed on the original scale of time by our original chain X,.

This problem of analyzing the set of trajectories of the original chain
X, corresponding to a given trajectory of the chain X!V is solved in the
present paper. As noted above, this not only will give a full characteriza-
tion of the typical tube of trajectories followed by the original chain X,
during the first excursion from Q; this paper completes the analysis intro-
duced in ref. 12 based on the renormalization procedure. Namely, we will
be able to associate to any state x" of 'V a suitable set Q ve S, a sort
of generalized cycle, representing the set where the original process X,
typically remains in the interval of time corresponding to a jump of the
chain XM

We will- also analyze the typical “descent” to the “bottom” of a
generalized basin of attraction of a stable equilibrium x" € SV, In this case
we can make a comparison with our previous results in the reversible case.
The situation when analyzing the typical “ascent” against the drift is more
complicated and, of course, in the nonreversible case typical ascents outside
a generalized basin Q and typical descents to the bottom of Q are not
related by time reversal.
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It turns out that, similar to what happens in the reversible case, the
typical descent to the bottom of a domain containing many attractors takes
place in a way that can be considered as the natural generalization of the
typical descent to the bottom x of a domain Q completely attracted by the
unique stable equilibrium point x. The main difference is the following: in
the completely attracted domain the system does not “hesitate” and it
always follows the drift up to the arrival at x in a finite time, uniformly
bounded in f, whereas in a general, not completely attracted domain the
process tries to follow the drift in finite times as far as possible but some-
times it has to enter into suitable “permanence sets” Q;, waiting suitable
random times 7, and then getting out from Q; through suitable optimal
points. The fact that the permanence times T; are close to the typical escape
times from Q, and that this escape takes place in the optimal way is the
counterpart of the fact that in the completely attracted case the only per-
manence sets are trivial in the sense that they reduce to single points and
the way of getting out from these single points (after a unitary permanence
time!) is optimal in the sense that it is along the drift.

Problems in many respects similar to the ones studied in the present
paper have been considered in the framework of the theory of simulated
annealing. We refer to refs. 2, 3, 6, 1, and 14-16 for results connected to
the tube of exit from a general domain.

The paper is organized as follows. In Section 2 we recall the renor-
malization procedure and extend previous results. In Section 3 we present
the Freidlin—-Wentzell (FW) graphical method by extending to a more
general case their definition of cycles. In Section 4 we establish some useful
properties of the cycles. In Section 5 we state and prove our main theorem,
which determines typical trajectories of the original chain X, corresponding
to a single step of the renormalized chain X", Finally in Section 6 we use
the results of previous sections to give a characterization of the tube of
typical trajectories during the first excursion outside Q.

2. THE RENORMALIZATION PROCEDURE

In this section we recall the construction of the sequence of renor-
malized chains introduced in ref. 12 and we prove some new results.

Let &(S)={{¢,};,cn: ¢,€S} be the set of paths. Following the theory
of large deviations developed in ref. 5, we define, for each reN, a func-
tional I, ,; on &(S) associating to each path ¢ € &(S) the value

1—1

I[o.,](¢)5 Z A(;, div1) (2.1)
i=0



Markov Chains: First Exit Problem 991

where for x #y, P(x, y) >0, the function 4(x, y) has been defined in (1.1)
and we set A(x, x)=0 for each xeS and 4(x, y) =0 if P(x, y)=0. This
functional is the cost function of each path ¢; we briefly recall now the main
results and the construction developed in ref. 12.

Lemma 2.1. Let ¢ be a given path starting from x at time 0; then,
for te N, the following hold:

(1) We have
P(X,=¢,Vse [0, ]) e loadb+yp

where y is the quantity introduced in (1.1).

(i1) If ¢ is such that ¢ ,#¢, ., for any se[0, t], then we have also
a lower bound:

PUX,=¢,¥s€[0,1]) e~ =t

(iii) For any constant I, > 0, for any o > 0 sufficiently small (x < 4,),
for any 1< e*, and for any sufficiently large f

sup P(Igo,(X,) > Ip) S e~ b +eb

where ¢ = 0 as f— co.

By using the functional I}, 1(¢), an equivalence relation, denoted by
~, can be introduced in the state space S: for each pair of states x, y we
define

Vix,y)= inf It y(9) (2.2)
L p=x. =y
and we set
X~y iff Vix,y)=V(y,x}=0 (2.3)

We denote by (x)_ the equivalence class of x, ie, (x)_.={yeS:
y~x}.
We say that x is a stable state if and only if

forany y + x, Vix,y)>0 (2.4)

ie., if each path leaving from (x)_ has a positive cost. We will denote by
M the set of stable states.

It 1s immediate to see that if the set M contains a state x, then it
contains the whole equivalence class of x, namely M o (x)_.



992 Olivieri and Scoppola

An immediate consequence of Lemma 2.1 is the following:
Lemma 2.2. (i) There exist constants Toe [0, |S|] and f,>0
such that for any f> f, and for any ¢t > T

sup P (T > t) <al/™]
~xeS§

where 0 <a=1—C™ for some constant 0 <C<1 and [-] denotes the
integer part.

(it) For any #>0 and for any ¢ > " and g sufficiently large we have

sup P (1, > 1) <exp{ —e"?}

X€eS

This means that the process spends, with large probability, almost all
the time in M. This result suggests that, if we look at the process X, on a
sufficiently large time scale, then it can be described in terms of transitions
between states in M; in this way only the behavior of the process on small
times is neglected.

Indeed we can consider the less stable states in M and we can define
a time scale ¢, corresponding to this smallest stability:

t,=e"1fror (2.5)
where

V= min Vix, y) (2.6)

xXeM,yeS. x £+ ¥

and J =4d(f) goes to zero as § tends to infinity.

We can then construct a new Markov chain X, with state space M,
corresponding to the original process with a rescaling time ¢,, by defining
a sequence of stopping times (,, {s,..., {,,-. such that ¢, ., — ¢, is of order
t; with large probability and X belongs to M.

More precisely, we define the sequence of stopping times

{o=min{r>0: X, e M}
and for each n> 1
o,=min{t>{,_: X, + X, _}
T,=min{t>0,: X,e M} 27

={cn—l+t1 if an_gn—l>tl
" Tn if an_Cn—l Stl
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It is easy to see that the sequence X, =X, is a homogeneous Markov
chain. For any pair of states x, ye M we denote by P(x, y) the transition
probabilities of the chain X,; it is possible to prove!!? that these transition
probabilities satisfy the same assumption (property #) satisfied by the
original chain X,, provided we identify states which are equivalent with

respect to the relation (2.3). More precisely, for any x, ye M, x + y,

exp{ —4(x, y) B~y B} < P(x,y) = P(X;,=y| X, , =)
<exp{—4"(x, y) B+ 7'} (2.8)

The quantities 4V(x, y) are defined by

A“)(X’J’)= inf I[o.:](d’)— v, (2.9)
tLé:go=x, 1=y,
ds¢ M\[(x). v (»).]

and y' -0 as f§— 0.

It is easy to show that the quantities 4*)(x, y) are invariant with
respect to the equivalence relation, ie., 4(x, y)=4V(x’, ') if x ~ x’ and
y~y'. In other words, equivalent states are not distinguishable in this
construction.

More precisely, let S =M/_ ={equivalent classes in M} and for
any i€ SV let m; be the subset of M given by the states belonging to the
equivalence class i, that is, M =1{J;c sm m;.

We can define a new chain X! on S¥ with transition probabilities

P“)(i,j)=ﬁ—) Y, a(x) Y, P(x,y)

( i/ xem; vem;

where /I denotes the invariant measure of the chain X,. This measure j is
related to the invariant measure u of the chain X, (which is strictly positive
by the ergodicity condition) by the following relation [ see ref. 17, Eq. (4.3),
p-1197]:

4}
wO) == Y flx)E, Y, xc(X)

=0

where C < S, y is the characteristic function of C, and Z is a normaliza-
tion constant.

Property & obviously holds also for the chain X" with the same
function 4" and the invariant measure of this new chain is given by
u' (i) = ji(m,) for each ie S,

822/84/5-6-1
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Thus we have a new chain X" on the state space S', to which we
can apply again the same analysis, by defining new stable states, a time
scale T,, a corresponding chain X!, and so on.

We recall here the iteration scheme introduced in ref. 12.

Notation. The superscript (k) will denote the various quantities
referring to the kth chain X*; e.g, 74’ =min{z. X¥' e 0}, Qe S'.

For any k > 1 we define the following quantities. For any ¢: N — S§®),

=1

I8 () =3 49¢:, ¢i 1) (2.10)
i=0
V&Y x, y) E“# ¢'Jrr=1i£1¢ vl‘[’f) 1(#) Vx,yeS® (2.11)
x~®y ifandonlyif V%(x,y)=V*(y,x)=0 (2.12)
MP={xeSP:VyeSH yr®x VH(x, y)>0} (2.13)
= ; (k) ,

V"*'_xeM«k),,?:lgk)_‘-,my Vi®(x, y) (2.14)
ey =elknB+of (2.15)

T =1
Tk+l=t t7"'tktk+l (216)
SE+D = po] 4y (2.17)
A”‘*”(x,y)—- min [([/\('))l]((p) _ Vk+| vx, yES(k-»—l)

do=x. =y,

"
ds# MU (x)_th) U () k)] Vse[0.1]
(2.18)
The main results proved in ref. 12 can be summarized as follows:

Theorem 2.1. Let WcS'Y and B W, and let W and B the
corresponding sets in M (W ={J,. »-m; and analogously for B). Then for
any sufficiently large § and for any xem,;, ie S'V\W, je W, there is a
positive y’ depending on y and tending to zero as f — oo such that

exp{ —y'f} P{U(X)=)) < P(X, em)) <exp{yf} P"(X\)=))
exp{ —y'f} LLEEMt)) < E vy <exp{y'B} 1, E{Ve)
exp{ —'B} u'"(B) <u(B) <exp{yf} u'"(B)

for any B< S'". Moreover, for any 4 e S\M

#(A4) <exp{—V,B+y'B}
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Since |S| <|SY~ V| (actually one can prove that |SU“+V| < |SU— 1)),
the above results provide a useful tool for the evaluation of these quantities
when |S| is large; in fact one can consider a time rescaling T, so large that
the corresponding state space S is so small that explicit computations are
easy at this level.

In order to control the large-deviation phenomena, for the Markov
chain X,, taking place during exponentially long times T, we collect, in
the rest of this section, some general and quite easily proved results related
to this renormalization procedure. The main statement on the behavior of
the chain X, on exponentially long time intervals will be given in Section 5.

Let us start by the following remark: We note that in the construction
of the previously recalled renormalized chains, we have to identify equiv-
alent states at each step of the iteration. In fact, due to the time rescaling,
the renormalized chain does not have enough resolution to distinguish
among equivalent states. This fact implies that chains at different steps of
the iteration live on different probability spaces. However, we want to
define now an application between trajectories of chains at different levels
of the iteration.

More precisely, for any integer n, to any path ¢ of the Markov chain
X,, ¢ € D(S), we want to associate a path ¢ of the Markov chain X",
¢ e d(S"), which is in some sense a projection of the path ¢ in the
smaller space @(S"). On the other hand, to any path ¢ e d(S™) we
want to associate a set, say a tube, of paths ¢ € &(S) having projection ¢,

Definition 2.1. For each path ¢ e #(S) we evaluate the sequence
of stopping times ¢, and we define a path ¢ € ®(M) given by q?,-:(b(i. To
each path ¢ € ®(M) we can obviously associate a path ¢ e d(S") by
defining ¢\ =i if ¢, e m,.

Using the same construction, we can thus define a sequence of trajec-
tories {¢!"},.n in the spaces (S™) with n=2, 3,....

On the other hand, to any given sequence of states in S (", i< T,
we can associate a tube of trajectories in &(S) as

TW", T)={$ e D(S): ¢ =", Vi< T} (2.19)

By construction this application between trajectories in @(S) and
trajectories in @(S™) is such that

PUNX = ¢ Vs < T) < P(X, e T (Y™, T)) (2.20)
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where we say that two quantities 4 and B are logarithmically equivalent
and we write 4 = B if they have the same exponential asymptotic behavior
in f, namely

A=B ifand only if lim —lnA— lim —In B (2.21)
p—eo f ﬂaoo/?

We say that A is logarithmically greater than B and we write 4 = B if
and only if

lim —1nA> hm —lnB 2.22
Jm g Jm g (2.22)

Definition 2.2. With this application we can also define a
sequence of random times Z} corresponding, on the original time scale, to
the times k on the time scale of the chain X™). More precisely, given a path
¢ e d(S), we have defined a sequence of times {y,..., {x,.. and a path
" e ®(S'V) associated to it, and, iterating, sequences of times {{,..., {{,...
and paths ¢/ *D e d(SU+") for each i=0, 1,....

We define

a,  n=12,. (2.23)
'c)cn—l)

which is a random time with respect to the process X,.

Definition 2.3. For each xe S we can define a set &7 belonging
to the original state space S, obtained by associating, at each step of the
iteration (<n), to each equivalence class the set of its elements. More
precisely, if n=1,

El=m, (2.24)

and, for j=1,.,n, if xe S and m'Y~" are the elements of S/~ corre-
sponding to the equivalence class x, then we set

gi= ) & (2.25)

X emu "

From (2.25) we construct iteratively 7 < S.
If we define

Sm= () & (2.26)

xe S
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we have immediately
S§V=M, §hc§i-b (2.27)
and by iteration it is easy to see that
Xz;eg"’), Vn=0,1,.. (2.28)
and
Tgm=2Z4 (2.29)
Indeed (2.29) immediately follows from a more general result:
Lemma 2.3. Forany AeS™ let % =),.,&"; then
Tgn=2Zn

Proof. The straightforward proof comes immediately from definitions
(2.24)-(2.26). 1

The results stated in Theorem 2.1 allow a control on the expectation
of hitting times. We give here some results which enable us to control also
in probability these random times.

We first notice that for any set Q =S we can define a chain X2 with
almost absorbing states in Q¢ as follows:

P9x, y)=P(x,y) if xeQ

(2.30)
Pox,y)=P(x,p)e P4 if xeQ x#y

where 4(Q)>Y, ..o 4(y, z) and P9(x, x) is defined by normalization.

As far as the first exit from the domain Q is concerned, the two chains
X2 and X, are completely equivalent (the superscript Q denotes all the
quantities related to the chain X9).

Proposition 2.1. For any QcS and any integer n let (S‘)2
denote the state space of the nth renormalization of the above-defined
chain X%; let

N=N(Q)=max{N: 0 (S™M)2 g} (2.31)
Then: (i) For any xe Qn (S™)2
E.tgexTy

[see (2.21) for the definition of =x].
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(i) For any a > 0 there exists k = k(a) > 0 such that for any xe @ n
(S"(N))Q

P(Tye ¥ <tp<Tye)z1—e " (2.32)

Proof. Point (i) i1s an immediate consequence of Theorem 2.1.
Indeed, since the events considered in this proposition belong to the
o-algebra &, generated by the events depending on the process up to time
Tge, We can consider the chain X9 instead of the chain X,, and thus
Q° < (§'W+1)2 On the other hand, since @ (SV*1)2 = ¢, this implies
07 =(§¥*12 For notational convenience we will omit from now on in
this proof the superscript Q: only the chain X is considered here; as we
noticed above, the same estimates hold for the chain X,.

By iterating N times Theorem 2.1, we obtain

E.toc<t, 'tz"'tN'Ef\m‘r‘Q'\Qx Ty

since SV *+ 1 =g and thus EM1Q) =< 1.
To prove (ii) we first notice that by using Chebyshev’s inequality we
have immediately that for every a >0 there exists £ >0 such that

P(tg>Tyef)yge ™ F
So we need only to prove that Va >0
Pltg<Tye )<e ™  forsome k>0 (2.33)

Since Q°=S8'"+1, by (2.29) the proposition is thus proved if (2.33)
holds when we replace 7, by

Zy+' =Zim
Since xe S™M\SW+D we have {{™ > 1 and thus the proposition is proved
if we prove the following more general result:

Lemma 2.4. For any N>1 and for any sufficiently small positive
constant « (i.e., such that ¢, e~ >1 for all n) there exists a positive con-
stant k = k(«, N) such that for any xe §*V

P(Tye P <ZY<Tyef)z1—e "
for any g sufficiently large.

Remark. In the application of this lemma we are not interested in
making the best choice of the constant k(«, N). We will prove the lemma
with the crude choice k(x, N)=a/2",
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Proof of Lemma 2.4. The proof is by induction. We first prove the
initial step:
P (e <, <t1ef)y=1—e "
By applying Lemma 2.1 we have immediately
Pl <te™)
<P (o, <te”F)
<SP (Bt<tie ™ A X, X,,)=V))

< tle—aﬂe—VllH'Yﬂ:e—(fx—é—r)ﬁ

and by Lemma 2.2 the probability P.({,>t,e**#) is superexponentially
small. So, for f sufficiently large, § +y <a, the validity of the first step of
the induction is proved with k(a, 1)=a—3d—7y.

Now assuming that there exists k = k(a, n— 1) such that

PAT, e ¥ <Z" 1< T, ,e¥)>1—e kan-DF (2.34)

we want to prove the same as n— 1 is replaced by n. We use the fact that
by definition the time

Z" Z"ln 3]
where {{"~ " is a random time defined like {, for the chain X" ~". In other
words, Z7 is a sum of {{"~ " random intervals of time distributed like Z7~".

We have
P(Z"<T,e~*)
<PV < 1,6 P
+ P,\-({C(I"_ D> t"e—aﬂ/Z}
~ {there are at least 3¢{" " intervals

oflength <2.T,_, e*?})

By using (2.34) at step n— 1 and the strong Markov property, we can
estimate the last probability by means of a Bernoulli distribution &£,=0, 1
with

pP=P(l=+1)=1-P(=0)

=max P(Z7"'<2.T,_ e?)ge - Ha2n-1~cb
xe&n -1
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with ¢ - 0 as f — co. Indeed,

1 Ip(1—p)
Pla - +am>i(5p))<plp s

and if « is sufficiently small (but independent of ) and />1,e~*?, we
obtain the estimate

P(Z"<T,e Py <e "

with k& = /2"
We can analogously estimate the probability P (Z% > T,e**). |

We conclude this section with a result referring to the existence of a
set of trajectories in @(S) associated to a given path in &(S™) on which
the probability is concentrated.

Proposition 2.2. Given ¢ e ®(S") and a time T (independent
of ), let Z4(¢™, T) = T (¢, T) be defined by

T, T)={pe T (¢, T): T,e~** < Zi < Te* Vi, k

such that Z) < Z% and Va sufficiently small}
Then for any ¢ € 7 (¢, T)\Zo(¢'™, T) we have
P(X,=¢,Vi<T)<e

for some positive k independent of S.

Proof. The proof of this proposition is an easy consequence of
Lemma 24. |

3. GRAPHS AND CYCLES

In this section we recall the main results on the first exit problem
proved by Freidlin and Wentzell'® and we give a more general definition
of cycles. We note that the results in ref. 5 are mostly formulated in the
continuous case, ie., for the study of a diffusion process defined by a
stochastic differential equation in R%

dX,=b(X,) dt +edW, (3.1)
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where W, is the d-dimensional Wiener process at time ¢ and ¢ is very small
(e2=1/8). The drift term b(.) is such that the deterministic flow

dX,=b(X,)dt (32)

has w-limit sets contained in a finite number of compact sets K,, K,,..., K|.
We summarize here their results in the simpler case of a Markov chain

satisfying the ergodicity property and property 2 given in the introduction.
Their analysis is based on the following:

Definition 3.1 (B-graphs). For any set of states B< S, a B-graph is
a graph consisting of arrows m—n with me B and neS, m+#n, and
satisfying the following properties:

1. Every state me B is the initial point of exactly one arrow.

2. There are no closed cycles in the graph.
Condition 2 can be replaced by:

2'. For any state m € B there exists a sequence of arrows leading from
it to some point ne B°.

In other words, a graph is a forest of trees with roots in B and with
branches given by arrows directed to the root (i.e., the set B¢ is the target
of the sequences of arrows).

The set of B-graphs is denoted by G(B); for any graph ge G(B) we
define 7(g) =111~ ne, P(m, n).

By using this graphic formalism, Freidlin and Wentzel® prove the
following lemmas.

Warning. Our notation is opposite that used in ref. 5, where a
W-graph was a graph with target W, ie, a W*-graph in our notation.

Lemma 3.1 (FW). The invariant measure of the Markov chain
X,:u(i), i€ S, is given by

where

g= 3 7(g) (3.3)
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Lemma 3.2 (FW). For any B< S let 75 be the first hitting time to
B; then for any je B
ngc,-,»(m n(g)

Pi(Xr =j)=
= deG(Bf)n(g)

(34)

where for any ie B and je B we denote by G;(B¢) the set of B*-graphs in
which the sequence of arrows leading from / into B ends at the point j (i.e.,
i belongs to the tree with root j).

Lemma 3.3 (FW). We have
Yeannin T8+ X e pejni eecumin T8)
deG(B‘) ﬂ(g)

=deG(i7~ B) n(g)
deG(Bf) n(g)

Etg=

(3.5)

where G(i » B) is the set of graphs (without closed loops) containing
|B<|—1 arrows m — n each one emerging from a different point m € B and
with ne€ S, m#n, and not containing chains of arrows leading from i
into B.

Lemma 3.1 is easily proved by showing that the quantities g, satisfy
the stationarity equation; Lemmas 3.2 and 3.3 can be proved by induction
over the number of states contained in W* (see ref. 5, pp. 179, 182).

By using property 2, these results can be reformulated as follows."’
Consider the problem of the first exit of our chain X, from a domain Q< §
and let 7. be the first exit time from the domain Q.

Proposition 3.1 (FW). For any J§ >0 and for any sufficiently large
B there exists J >0 such that

—B(Wolx. v) — W — o) — —
e~ PWalx. ) uQ+t§)<P_\.(XrQ‘-=_)’)Se BUWglx.y)— Wo—6) (36)

for any xe Q and ye Q°, with

Wo(x,y)= min W(g) (3.7)
g€ Gy(Q)

Wo= min W(g) (3.8)
£€G(Q)

wWig)= ) d(imn) (3.9)
m-—neg

and 6 -0 as f— 0.
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Proposition 3.2 (FW). For any xe Q let Y, be the set of states in
Q¢ such that there exists at least a graph minimizing (3.8) and containing
the sequence of arrows x — --- — y. Then with probability converging to
one as f tends to infinity the first exit from the domain Q of the process
starting at x take place in Y. (See ref. 5, Theorem 5.2, Chapter 6.)

Proposition 3.3 (FW). For any xe Q

1
lim Bln E.tge=Wy— My(x) (3.10)
p—
where
My(x)= min W(g) (3.11)

ge Gix» Q9

Let us now suppose that the set Q contains a unique stable state x,
completely attracting this set, i.e., for each ye Q there exists a path y,=y,
V14 Yo =Xo such that A(y,, y;,,)=0, Vi<n, while 4(y, z)>0 for each
ye Q, ze Q°. Then in this case Freidlin and Wentzell can describe in com-
plete detail the exit from Q.

First, in this case the quantities (3.4) and (3.5) can be easily estimated
as follows (ref. 5, Theorems 2.1 and 4.1, Chapter 4): for all xe Q

.1 .
lim —1In E 7,.=min V(x,, y)
ryeQ©

B~ f

where V(x,, y) is defined by (2.2), and if there exists a unique state yoe Q¢
such that V{(x,, yo) =min, o V(xy, y), then

lim PyX,=yo)=1

A=

Moreover, in this case of a domain @ containing a unique stable state,
the last escape is described quite precisely and completely in ref. 5.

We state now their result in our discrete case of Markov chains (see
ref. 5, Theorem 2.3, Chapter 4 for the continuous version of this result).

We wamt to notice here that in the continuous case of diffusion
processes discussed in ref. 5 the dynamics corresponding to zero random
noise was given by a dynamical system, that is, the unperturbed system was
completely deterministic and for each starting point there was a unique
deterministic path emerging from it. The tube of typical exiting trajectories
was given, in that case, as a neighborhood, in the uniform topology, of
such a deterministic path.
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Here, in our present case with finite state space, the situation is
different and, even for = oo the system can still be random. This means
that there is not a unique deterministic path, but several possible paths
emerging from the same starting point. Moreover, we do not have to con-
sider a neighborhood, since the space is discrete. So the typical exiting tube
in this case is a finite set of individual paths.

Proposition 3.4. Let Q be a set of states containing a unique
stable state x,, and for each given « and £ define

D= {{d}sent T, <e* ¢y =Xy, ¢r,e 0", ¢,€Q,Vs<T,;} (3.12)
and

B,y={d,€ D,y I1o 1,3(¢) = min V(x,, y)} (3.13)

ye Q-
Then there exists a, (see Lemmas 2.1, 2.2) such that if a <o, we have

lim P(X, ., =¢,V1=0,.,75.—0,, forsomepecd,)=1 (3.14)

s

where 0, =max{t <1, X,=x0}.

Proof. A proof of this proposition can be easily obtained by applying
Lemmas 2.1 and 2.2 (see ref. 11, Proposition 2.1, for a complete proof). ||

For each Q< S let g€ G(Q) be a Q-graph minimizing the quantity
W, defined in (3.8).

Freidlin and Wentzel, assuming that g} is unique for every Qc S,
introduced the definition of a sequence of sets, called cycles, which are use-
ful to describe the behavior of the process X, in time intervals exponentially
long in B.

However, this uniqueness hypothesis is very restrictive. Indeed, if we
assume it, for instance, in the case of a reversible Metropolis dynamics, we
end up with a trivial problem in the sense that there is a unique minimum
of the energy function.

We will drop the uniqueness hypothesis and so we will need a more
general notion of cycle. In the literature, especially in connection with
simulated annealing, extensions of Freidlin—-Wentzel cycles have been intro-
duced. See, for instance, refs. 6, 2, 14, and 15 (and references therein), where
the basic results on cycles have been proved in the general case. In what
follows, to be self-contained, we will give the basic definitions on cycles and
discuss their main properties; for the proofs we refer to refs. 2, 3, and 14.3

3 See also the extended version of the present work in the Texas archive mp-arc 95-423.
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Definition 3.3 (General Cycles). Given a set of states 2 and a graph
9 of arrows connecting pairs of states with at least one arrow emerging
from each state, we define the following partition of the space Q.

For any given state x,e£ we define the set of its descendants as
follows:

A, ={xo} U {xeQ2: 3 asequence of arrows

contained in %: xq— x; = -+ ~Xx} (3.15)

By definition, the graph ¢ has no arrows exiting from the set 4,
(possibly 4, =Q) and 4, = 4, for any xe 4. We say that 4 satisfies the
cyclic property if

A.=A4 forany xeAd (3.16)

If 4., satisfies property (3.16), we call it a cycle; otherwise its decom-
position into cycles goes as follows. We call the singleton {x,} a cycle.
Moreover, let x, € 4, be such that the set of its descendants A, is strictly
contained in 4. Such an x, exists if 4, is not a cycle. If the set A, satisfies
property (3.16), then it is a cycle. If 4, is not a cycle, we define {x,} to
be a cycle and we choose x, € 4,, such that the set of its descendants 4,
is strictly contained in 4. It is easy to prove that this procedure stops at
a certain x, such that 4, is a cycle. In fact (4, | <|4,,_,| and for any set
of descendants 4 we have |4] > 2.

We have now to start again this procedure for all the states which
have not been touched by the previous construction, i.e., outside the set
{xoyu{x;}u - uix,_}ud,.

In this way we obtain a partition of € into cycles.

Now we will apply this abstract definition of cycles to our case. We
consider first 2 =S and we define a graph ¢ as follows. For any Q< S let
Ry(-) be a function from Q to the parts of S\Q defined as follows:

Ry(x)={ye Q°: there exists a graph g minimizing ¥,

and a chain of arrows x —» -+ —» yeg}} (3.17)

Given a pair of states x;, x;€ S we say that x; is a successor of x;, and
we write: x;— x; iff x;€ R,y(x;).

We obtain in this way a graph ¥°.

We want to stress that this graph %° is not, in general, a B-graph
satisfying Definition 3.1, and generally several arrows emerge from a single
state in 4°.
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Cycles of rank zero: The O-cycles are defined as the single states. We
denote by €°= S the set of 0-cycles.

Cycles of rank one: If Q=S and ¥ =%° the previously defined
cycles are called 1-cycles. We denote by %' the set of 1-cycles.

Cycles of rank k: We procede by iteration. We consider as states the
(k —1)-cycles, ie., at each (k—1)-cycle C¥~! we associate a point and
Ci=' > Cf7Viff Rex-(x) e Cf ! for all xe Cf~'. As we show in the next
section, dedicated to cycle properties, actually the set Rc+-1(x) does not
depend on Xx, and so the definition of successor is well posed.

In this way we define a graph ¥* ' of arrows between (k — 1)-cycles.
The cycles in the case 2 =%*"" and ¥ =%*"" are called k-cycles.

Remarks. At each step a k-cycle, with k > 1, turns out to be either
a (k — 1)-cycle or a union of (k — 1)-cycles which is the minimal descendant
set, where minimal is respect to the relation (3.16).

This means that each (k — 1)-cycle contained in C* is a descendant of
each other (k— 1)-cycle contained in the same C*.

We note that for each k the set of cycles of rank k& define a partition
of the state space S.

We conclude this section with a final remark. The rank of the cycles,
here as in the definition by Freidlin and Wentzell, under the uniqueness
hypothesis, is a parameter necessary to the construction, but it does not
have an intrinsic meaning. The iteration of this cycle construction is com-
pletely different from the renormalization procedure, where the iterative
parameter has an immediate interpretation in terms of time rescaling,

4. PROPERTIES OF THE CYCLES
We collect in this section the main properties of the cycles.

Proposition 4.1. If C and C' are respectively a k-cycle and a
k'-cycle, then

CnC#yg mplies C<C' or C=2C (4.1)

For any set B< § we will denote, as before, a B-graph minimizing W g
by g} [see (3.8)].

Moreover, we recall that the cycles of rank 0 are identified with single
states and we set g& = (.
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Proposition 4.2. For any k-cycle C*, with k> 1, we have:

(a) Given xe C* for any ze R<“(x), and for any C*-graph g%« with
an arrow ending in z, there exists y € C* such that

g&x= g\ VI(y— 1) (4.2)

(b) For any set 4#, A<C* each (C*\A)-graph g¥«,, mini-
mizing Wcry, does not have arrows exiting from C* (then at least one of
its arrows ends in A) and can be written in the form

goa= U gl (4.3)

m: k=1 ck

m

(c) Each Ct-graph g¥: minimizing W has a unique exiting arrow
and this implies, in particular, that the successor set of the cycle Rq«(x)
does not depend on x, i.e., Rqx(x)=: Rc.

Proposition 4.3. For any set C with |C|>1, the following are
equivalent:

(1) Cis a cycle.

(i1} For any cycle C' contained in C the successor set [see (3.17)]
satisfies

R.cC

(1ii) There exists K> 0 such that for every xe C, B C, x¢ B, and §
sufficiently large we have

P(X.  ¢B)<e ™ (44)

Tecu
(iv) E,7¢ is independent of x e C in the sense of logarithmic equiv-
alence and for any Bc< C and for any xe B and ze C

1 1
lim =ln E .tz < lim =1n E_ 7 (4.5)

/)‘—-»ooﬂ ﬂ—-ooﬂ

Remark. Statement (iii) describes what we call the recurrence
property, which is one of the main features of cycles.

We note that from (iv) of this proposition and from Proposition 4.1
the quantities V¢, :=limy_, ,,(1/8) In E 7 provide a natural ordering for
cycles C; containing a given state X, alternative to the rank.
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As proved in ref 11 for the reversible case, a consequence of the
recurrence property of cycles is the exponential distribution of their first
exit times.

Proposition 4.4. If C is a cycle, then for any x,yeC, 6 >0, we
have

lim P(E,tcce <t <E toe)=1 (4.6)

f— o0

and the probability distribution of 7., when suitably renormalized, is
asymptotically exponential as f — co. More precisely, let T; be such that

sup P (tee>Tp)=e! (4.7)
xeC
Then, Vxe C
. E.tee
lim —=—=~=1 4.8)
B—x Tﬁ (
and VxeC, VseR™*
. Tce _
lim P, <——>s>=e s (4.9)
B— oo Tﬁ

We conclude this section by giving some properties of cycles connect-
ing them to the renormalization procedure of Section 2.

More precisely, the aim of the remaining part of this section is to
associate to each state x"eS™ a cycle C, for the original chain X,
representing the region of the state space S corresponding to the renor-
malized state x” under the time rescaling T,. The precise statement of this
correspondence will the subject of the next section (see in particular
Theorem 5.1).

First of all we will define the generalized basin of attraction of each
state and we will prove their main properties. Finally, by using these
properties, we will be able to define the particular cycles C.. Vx"e S™.

We recall, once again, that the superscript (n) denote quantities
related to the chain X, We will denote by x", y” elements of the space
S and by m%~" the set of equivalent states in M~ V<S¢~ (with
respect to the equivalence relation ~!"~'") corresponding to the equiv-
alence class of x”.
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Definition 4.1. For any n>1 and for any x"eS" we define the
basin of attraction of x" as the subset of S~ ! given by

Bf\'_,',_” = {Zn—l eS(n—l): ayn—l Em_ﬂf,‘,"”: V(n—l)(zn-—lgyn—l)=0}

Definition 4.2. We say that a state x€ S is connected by a steep
path to x"€ S if and only if there exists a sequence of states of increasing
stability y'e S, i=0,..., n, such that y°=x, y" = x", and

yeBW:  Vi=l.,n-—1 (4.10)

Definition 4.3. Given x"e S, we define the generalized basin of
attraction (GBA) of x" at level n as the subset of S given by

#", = {x € S connected by a steep path to x"}

We can also define a GBA for a set of equivalent states (ie., a
“plateau”) instead of a single state.

In the following we will often use the short notation p™ to denote a
plateau m%, for some x"*+!. We recall that p'” is made up of stable points
of S p" = (x"*1)_, with (x"*'e M'™),

We define

Brw= ) B

» e,,(n)

Remarks. It is immediate to verify that

n Zn—1
g.\‘" - U ‘JZ.\';'-‘

X e Bf"},_ h

It is also immediate to verify that for each x € £", we have x e #", and that
for any y e &", with y" #x" we have y ¢ 4"..

On the other hand, we notice that for any n> 1 the GBAs #", define
a covering of the space S for x" e S'". Different GBAs, say y?f\'q, B, with
X7, x7eS™, can partially overlap since there may exist “saddle” states
decaying to different equilibrium states.

We used a superscript # in the definition of the GBA to emphasize that
it depends on the index n. More precisely, if a state belongs to two different
state spaces xe S and xe S+ "), then we have #7.< #7+".

822/84/5-6-8
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Definition 4.4. We will define the strict generalized basin of attrac-
tion (SBGA) of x", the set given by

¢
no. il
A", .=< U z)
J.n e S(n)v ,"" # :

For any plateau p'” e §" we analogously define

¢
noo.__ RN
J [1("' '—< U 9 .‘,u>
e S\ ptn)

Definition 4.5. For any xeJ#",, we say that the process X,
starting from x, falls to the bottom x" if the following event takes place:
there exists a sequence y°, y',... satisfying Eq.(4.10) with y°=x, y"=x"
such that

X, . €& Vign
St ¥

One can show that with large probability, starting from any state x,
the process first reaches the bottom of its SGBA. More precisely:

Proposition 4.5. Let x"eS"); for each xe %, we have
P (the process falls to the bottom x") > 1 —e¢ ~%# (4.11)
which implies

P.(X

Tgin)

es")=1—e X (4.12)
and

P'\.(T§(n)< T

n—1

)21—e X* (4.13)

for some K, K’ >0 independent of §.
Moreover, for any xe S and for any n>1, let x{, x3,..., x} be the set
of all the states in S such that x € #'». Then

P (the process falls to the bottom x7

for some j=1,..,i)>1—e %¢ (4.14)

Proof. The proof immediately follows from the definition of the
SGBA. Suppose that the process starting from x does not fall into x”. For
each trajectory of the process X,, we can define a sequence of states of
increasing stability as x%=x, and for each i>1 we take x e S such that
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X, € &% If the process does not fall to x”, there must be a state x' of this
sequence such that i<n and x' ‘¢B"‘” This means that the sequence
X{=Y 5=0,1,2,.., that we can construct on the trajectory of the process
{see Definition 2.1) does not follow a path of zero cost to reach a stable
state. By using Lemmas 2.1 and 2.2 one can easily complete the proof.
Equations (4.13), (4.14) follow from Proposition 2.1. |

Remark. If we define the fall to the bottom p"™ as the event that
there exists a sequence y°, y',.. satisfying Eq. (4.10) with y°=x, y"ep"™
such that

Xm,-)eéo_';,; Vlgn

then, by using the definition of the SGBA of a plateau, it is immediate to

prove that with probability of order one the process falls to the bottom

p'", ie., the statement of Proposition 4.5 holds even in the case of a

plateau.

We can prove something more: first of all, the mean exit time from a
SGBA is exponentially large, namely:

Proposition 4.6. For any n>1, for any xjeS', and for any
Eépl\’_n
0
= - (”)
/}lLrnO‘O 5 In E, w T (ame = V,+ +V,+ V_\,o.
where V,, i=1,.., n, are defined by (2.14) and (2.11) and
V= lim —lnE aT ')
. B

o f— o (\)r

[see (2.11)].
The same holds for the SGBA of plateaus by replacing the single state

xp with a plateau p"’ where
&= U éu
.\Jlsp[")
Proof. We define the set
D= U &

Ve Sttt Xy

By iteratively applying Theorem 2.1 we have that for any xqe & :'8

E_\-OTDX exp[( Vit +V,+ V(n)) ﬁ]
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To get the theorem we have only to prove that
ExgtD = E-\‘O‘E(Q:{,’)‘

By definition

(ﬂf\’,g)“ =¥ )
Suppose now that
Ex°rD>-Exur(g,zs)c (4.15)
We will prove that this implies
P.(tp<e ™E t,)ze ™ (4.16)

with @ > 0 independent of f and v — 0 as f — o0, against (2.32).
Indeed if the inequality (4.15) holds, then there exists d> 0 such that

() &)
E tpe” ”BEXOT(%S,fe‘/ 4

By Proposition 2.1 applied to 3’3"’0 we have that for any d> 0 there exists
k(d) > 0 such that

) —k(d
Py S EqTigmpe ™) 2 1 —e 0/ (4.17)

To prove (4.16) with a=dj2, since E, v, = T,, it is thus sufficient to
show that for any

yeDn (.43;’_3)"

there exists y” # x" such that ye@f",. and thus there exist y', y% ..., y" such
that, if 4 is sufficiently small (independent of f), we have

P (14, < T, e~ W28y > e=7F (4.18)

with y—» 0 as §— co.
Indeed we have

—(d/2
Pt s, <T,e~ ")

T
P P_v <XT§(|) eg,\l" N Tz <7"e_(d/2)ﬂ
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. T,
x min P, <X,§(2)E£’)2;('\T§(zx<—"e‘(d/2)ﬂ
,1:158'_",l n

. T
X min P, | <X,§m €6 NTgm< e )5 em1F
i . n

n—1
Vn—1E8 n-1

with y = 0 as f — c0. We have used the fact that the probabilities
T 2
Py’. (T§(i+n > _n_"e—(a/-)/?>

are superexponentially small.
Exactly the same proof holds by replacing the state x{ with a plateau
" by using the set

pe=sl(U o) 1

In order to relate cycles and GBAs we give now two technical lemmas.
Their proofs are in the Appendix. The first lemma contains a result on
graphs and renormalization. The same result in the reversible and non-
degenerate case is given in ref 13. Here te presence of equivalent states
makes the statement more complicated and the proof much longer.

Lemma 4.1. For any k>1 and for any set D¥ = S**) we consider
an arbitrary set D¥~'< S% =1 such that

Dk-'c | mE~Y, mE-PaDF g WxeD* (4.19)
.\‘EDk

Let
ok :=SW\D*
and
k—1 :zs(k—l)\Dk—l

As in Section 3, we define for any k>0

W= min Y A%, )

gEG‘k)(Qk) i—~jeg

and let gf2* be a graph (not necessarily unique) in G**'(Q*) minimizing
W(k‘).
Q
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Then given a graph g{5/* we can construct a graph g5~ !"* minimizing
W%zl and we have
o

er—n_ W+ V. |0F] (4.20)

Conversely, given two sets D* and D*~! satisfying (4.19), given a
graph g{5=!"* minimizing W{!', we can construct a graph g'#* mini-

mizing W”‘i and satisfying (4. 20)

The SGBAs share with the cycles the property that with large prob-
ability the bottom x, is visited before the exit from .ﬂ"_,.. More precisely:

Lemma 4.2. For any n=1, for any xje S", and for any \Oeo"
any (4’ ,,\\0) -graph minimizing

W
B .\3 \xo

[see Eq. (3.8)] has no arrows exiting from ﬂ'\’u
The same holds for each stable plateau, ie, p"'<S"' with
V(")(.\'", yn) > 0 fol' each .\'" ep(n)‘ yn ¢pln).

Remark. We note here that, due to Proposition 3.1, the statement
of this lemma is equivalent to the following one:

For any n> 1, for any xje §"”, and for any x,e¢” p and xe A" o we
have

PUX # xp) <o KB

i
L1 .H_\G\.\ul‘

for some K> 0.
We stress that this result is stronger than Proposition 4.5. In fact here

every state \(,e 6 ,. is visited before the exit from #",
i

)

The following result is an easy consequence of Lemma 4.2:

Proposition 4.7. Any cycle C’ c%’\\:} such that é’\‘:;, ¢ C' satisfies
R@c%% (4.21)

The same holds for stable plateaus, by replacing xj with p"’.

Proof. Suppose (4.21) is false and let g? be a graph minimlzmg We
and containing arrows ending outside J . Moreover, let xj,e f g e If
we consider now a graph

*
N
g'”\{? \¥p
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minimizing

Wgo_’\‘.’g'\x;,
we can construct a graph g’ coinciding with

*
g :BA,’N\.\'(',

for all arrows with starting points in ( N\\O \C’ and coinciding with g%
for the arrows starting in C'. The new graph g because of the argument
of proof of Proposition 42(a), is indeed a (.2'\,3,\.\0) graph minimizing

W iy

Since g¢. has a unique arrow exiting from B s g’ itself has an arrow exit-
ing from J o against the statement of Lemma 4.2, 1

We prove now the main result of this section:

Proposition 4.8. For any x"e¢ S" there exists a cycle C.. for the
chain X, such that

CanS"= E
and
VC‘_\41= Vl + -+ Vn+ Vf\'}'}

C . turns out to be the maximum cycle containing &, and contained
in the SGBA of x": #'..

Proof. For notational convenience we set in this proof 4. = B.
Suppose that for any x, € &"., we are able to show that the maximal
cycle C contained in B and containing v, is such that:

(iy &ucsC
(i) Ve=Vp(xo)i=lim,_ ,(1/8)In E 7p.

Then, by Proposition 4.6, we get the result. Point (i) means that the
cycle C is the same for each xy,e &”.. To prove (i) and (1) we fix x,e &'
and we consider the maximal rank k& of the maximal cycle C contained in
B: Cc B, x,e C, Ce %", where the maximality of the rank k means that the
cycle of rank & + 1 containing C is not contained in B.

To prove (i) we note that, as a consequence of Proposition 4.7, the
SGBA B is measurable with respect to the family * of cycles of rank k,
ie., B=);c, CF, where b is a suitable set of indices and C= Cj‘.' for some
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jeb. Indeed, suppose ab absurdo that there is a C'e%*, C'#C with
C'nB+# @ and C' ¢ B. Then there must be a cycle C” < B with R.. ¢ B
against Proposition 4.7.

Thus not only is B measurable with respect to €, but also every
Ck# C, ieb, has its successor in B: R+ < B. This means that if (i) is not
satlsﬁed if C » &"., then again by Propos1t10n47 R-c B, so that the
descendants of C are in B and thus the cycle C**' of rank k + 1 containing
C is contained in B against the hypothesis of maximality of C. This prove
that (i) holds and that

RenB # (4.22)

By (i) we know that V< Vig{x,). If now V(xg) = Vp{xo) — 2a with a > 0,
we would have, using Proposition 2.1,

P,\-O(TB" < efVctxo) +a) < e—Kﬂ
with K= K(a) > 0; but, on the other hand, by (4.22) we get

P\ (TB_<eﬂVc(.\'u)+a)
Xo ¢

P (tee<efVctany ¢B)ze %

with 6 —» 0 as ff — oo. This leads to a contradiction, proving (ii). |

Proposition 4.9. For any plateau p'™ which is stable for the chain
X", ie, p"=mG, for some x"*'eS"* "), there exists a cycle C,um for
the chain X, such that

CunﬂS(") é’”’( —éa\x_,.t{
and

VCP(n) = V + -+ Vn + V i

p(n)
Cpm turns out to be the maximum cycle contained in @gm, containing & .

The proof can be obtained exactly as in Proposition 4.8.

5. THE MAIN THEOREM

In this section we give the main tool for the control of the behavior
of the chain X, on exponentially long time intervals. This result completes
the analysis developed in ref. 12.
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For any pair of states x", y" € §'” we can in fact describe the behavior
of the chain X, by knowing that the corresponding chain X! is doing the
transition x” — y". More precisely, for any state x"€ §"” we can define a
set Q.. contained in the GBA of x” as follows.

There are two possible cases: (a) m';~" =x"""'and (b) m%~" —p"’ -,

Let Cu-1 (Cpn-n) be the max1mal cycle contained in 33“ - (%:',.‘_'..)
given by Proposition 4.8 (Proposition 4.9).

For simplicity we will consider in what follows only case (a). The
analysis of case (b) is exactly the same since the same properties have been
proved for generic single states and for stable plateaus in Propositions
4.5-49 and Lemma 4.2.

As shown in the proof of Proposition 4.8, the cycles C,,..., C, inter-
secting #".-\ of the same rank as Cy-1, say C; = C,.-1, are strictly con-
tained in J"". and provide a partition of #7,-}. Moreover, by the same
argument (again by Proposition 4.7), we have that for any xe #"._| any
cycle containing x either is contained in #”,-} or it contains C-1.

Let us now consider the set Zf{‘.‘\l”@,“ Each state x contained
in this set is such that the minimum cycle containing x with nonempty
intersection with some #’.} contains C..-1 and C.-1. Indeed each
xe B \BL lS such thai there exist at least two sequences x°=x, x’,
x%.,x"" ' and y¥=x, p',y%., """ such that x'e B\, and y ‘e B
Moreover, if x € B,1, then the minimum cycle different from {x} contammg
x contains x', and since x € B,,, the minimum cycle different from {x} con-
taining x contains also y'. If x' # y!, the minimum cycle containing x' and
y' strictly contains also C,» and C,.. Again, if a cycle strictly contains C.
and x'e B'Y, then it contains x?, and the same for y' and y> By iteration
we can conclude that the minimum cycle containing x with nonempty
intersection with some 4'.~: contains C-1.

In conclusion we have that both the sets #".-\ and #",-!\#"."| are

measurable with respect to the family of cycles of the same rank as C.-1:
B'i=CluCyu---UCu---uCy (5.1)

For each one of these cycles we have that Vo<V + --- +V, » if
> 1.

We can now define the permanence set Q.. associated to each x" e §:

Definition 5.1. Among this set of cycles {C.;},_, _, we will con-

sider the maximal subset {C;},.,, with # ={l1,., L} such that for any
ie s there exists a sequence j,(i), ja2(i),... j(i) € F with j(i}y=1, j (i) =i,
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and RC’WmC,Mm;éQ. Then we define the permanence set associated
to x":

Q.= G (5.2)
ie s

The set Q.. is the set of states visited by the chain X, in the interval
of time corresponding to a transition x"— y" of the chain X!". More
precisely, let

—1). (n—1)
o.in ”.=T”1,,_n

(my )

and for any 7> 0 let
@ =D(x", y*, T)
:={¢""""ed(S” ) such that
gy Vem =, ¢ Vemi=V, ¢ Neg M VYi=1,., T—1}

o

and let Z"~! be defined by (2.23).
We have the following:

Theorem 5.1. For any « > 0 sufficiently small (see Lemma 2.4), we
define

A :={Z_ e[T, e~ T,e*]}
A,

{Z;(:Jl)_ 1 < T¢Q‘\‘,,y" < Z:;:;—]l)}
Ay:={3T, ¢~ Ve @ (x", y", T) minimizing I {7
such that X,e 7 (¢ =", T) Ve > Z% 4 _ )
G = {XI)“) :X”, X(ln) =yn}

There exists a positive constant K, depending on « but independent of
f, such that for any sufficiently large § and for any x e &%, we have

P (A nA,nA;|G)=1—e K
Moreover, if we add the hypothesis that
there exists z"#x" suchthat P"I(x" z")=1 (5.3)
and if we define

Ay:={Vye C, -0 It <ZU=l)_, such that X, =y}

m.n
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then we have, for any sufficiently large § and for any xe &”,
P(A,NnA,nA;nA,|G)=1—e %
Proof. We will prove that for each i=1,..., 4 we have
P(AS|Gyge™ X

Let |m'%~ " =m; we have

th—1

PG)= Y Y P V>t a{X- b=z
1=0 -1 Eln“‘ "
xy Y Pt (XD =g =D ys<T)

T ¢n- N @n~1 ¥ T)

{ty/mt) —1 m—1

=Y ¥ X PUe"Vsmr+ryoa{Xiil=

, "
=0 =0 _n- |E,,,<n 1)

xz 2 P:"'_I(XA(\‘”_”:¢A()"1—”VssT)
T ¢‘"'”e(l)“'“”(_\"', T

(n—1}

1019

:n—l})

(54)

Since m'%~ " is a class of stable equivalent states in $*"~ '), we have by
definition that for each pair of states in m',~" there is a path ¥~ " in

§"=" connecting these states of length at most m with "~V sy

and 7"~ V("= 1) =0, to which we can apply Lemma 2.1(ii).
In this way we obtain the following estimate:

m—1

Y P({a" Vsmt' 41"} a{xs =211

'+ 1"
" =0

m—1

=2 Y P Vsmt'}a{XiV=u""")

"
"=0 - lsnr(" n

XP“,,_l({a.tn—l)>[H} m{x([{,—l)=zu—l})

e P ({c" " V'>mrl'})

By using (5.59 from (5.4), we obtain

ty/nr—1
PGz Y PJLc" V>mt)ye
r'=0
X Z 2 Z P |(X("7” d)("ﬁ”VS<T)

n-0 T ,/,lu—l)e
@l Ny T)

m-le nin

{(n—1)
i+

(5.5)
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Let us now consider the case i=1. We have
P(ASIG)K<P(A5|G)+ P (Ayn A5|G)
with
Ag:={t,>0" " V>q e D
We remark that {¢"~'>1,} nG=0.

We can estimate from above, by using the same expansion used to
estimate P (G), the following probabilities:

P(ASNG)= ) > P({o" ">ty a{xn-D=z"1)
t<tpet 9B, lemt=
xY Y Pa(XUV=gU-bys<T)
¢(n—l)E

@tn= 1 yn, »T)

< Y P V>0

t < tye—\ef

* LT T PealXrU=grttVs<T)

Pn—lg

o em‘" I
plte— I)('\.n. ",n‘ T)
so that
Zl < tye— a2} P (o o" > 1)
A IG) l,,/m—l (n—1) —aff
>Spm Po >mt')e
Zr<r,.<""/-’/’ P,\'(U(" D> 1)
Zl,,/me““/'“ﬂ (o.(n— D n"/) e—F
<e—~(a/4)/}t"
h e‘a’ﬁ,n

where o' =0 as f— oo and we used Proposition 2.1 to get the last
inequality.

Let us consider the probability P (A4,n A{|G). Since for any
te[t,e='“?8 t 7 we have that

P, ({ - 1)__1<T,,£’¢"/}}U{Z"m n_g> ,1€”ﬂ})

gP_\.({ZZJ-ln_l <t-T,_ 10_(('/2)/7} U{ 24:—]”_' >t- T,,_le(u/l)/}})
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Then, proceeding as before, we have

P(AynASAG)

In—1
S Z Z Px({O'("—”>f}ﬂ{X("_l) n—I}

t=tye 0 4o lemi- 1

A{ZI <1 T, =P G {207 > 1. T, e} ])

xy T Pan(XUD =g -Dys<T)

pn-De
=N, ¥ T)

It is not difficult to extend the same argument of the proof of
Lemma 2.4 to obtain, for any 7€ N, the inequality

Pt T, ,e~“PBLZ" =<t T, e “F)>]—e k8

with k=k(a), and thus we can prove as before that P (4,n A{|G) is
exponentially small.
Let us now go to the case i=2. We first observe that, by Lemma 2.3,
since
Fophns =gz
we have that Z”;,, > 7(p..; thus, by using the same expans1on used in the
case i =1, we have only to prove that P (7 gy < Zd(,. 1_4) is exponentially

small in §.
We have

P (T(guy< Z:;(:—lll_ 1)

SP\< TQ, me < U, RC,))

+ Z P:(Xff(n-neg:rg.l”) (5.7)
(@ (Uies Rg))

To estimate the first term in the r.h.s. of (5.7) we first note that, by the

definition of C..-1 and Q.., there exists at least an index iye # such that

Rc,»0¢ Q.- and a sequence j, = 1,..., j, = i, such that

NG #D (5.8)
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On the other hand, since
CicB" b forany ieJsf
I".\ﬂ

for any i { ..., j«} there is a sequence satisfying again (5.8) starting with
i and ending in j,,.., j,. By iterating this argument we can conclude that
we can choose a sequence of graphs g¢, i€.#, minimizing, respectively,
W, such that

U g&=: g0 (5.9)

ie.s

is a O .~graph. As was noted in the proof of Proposition 4.2, we have, for
any g€ G(Q )

ie s
and since g[ , are C;-graphs, we have

Wig)= Y Wigt)=1Y W

ie s ie?

This implies that each Q .~graph minimizing W, , has the form (5.9)
and thus

Ro.< | R, (5.10)

ie.y

By means of the FW results (see Lemma 3.2 and Proposition 3.2) we
can then estimate the first term in the r.h.s. of (5.7) with an exponentially
small quantity.

The second term in the r.hss. of (5.7) can be estimated by Proposi-
tion4.5 if we remark that, by construction, each point in (Qu) N
(U;es R¢) belongs to

Sn—1 .
(Fytor

Let us now consider the case i =3. As in the case /=1, we define an
auxiliary event

At} = {f("_ 1) gellﬁ}
where # is arbitrarily small and

ftn—l) :=min{[>aln—l)_1;X£n-l)eM(n—-l)}
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We have
P(ASNnG) K P{AY N G)+P(A5n 450 G) (5.11)

By using the fact that the event 4% depends only on the process X~
after the time 6"~ ' — 1 and by using again the expansion used to estimate
P.(G), we immediately obtain a superexponentially small estimate of the
first term in the r.h.s. of (5.11) by means of Lemma 2.2(ii) applied to the
chain X!"~ Y. The second term can be estimated from above as follows:

m—1
PASnA50G)S Y Y Pa" > a{xih=mt

=0 j'—lsmf\','.'”

x ¥ T Pa(XU V=4V Vs<T)

T<eW $n=De

= Uy, 1) (5.12)
where
G (x", y, T)
={¢ e~ "(x", »", T) such that
1‘[’6}'1)(‘15) > I((’z).—rll)( 2)

min
,,,m- Be@in- WY
and so, by applying Lemma 2.1(iii) we obtain an exponentially small
estimate for P (A4,]|G).
In the case in which there exists z" such that P")(x", z") = |, we can

also prove that P.(A4|G) is exponentially small. In fact, in this case, by
Proposition 4.8 we have that

VCm‘"},‘”= I/1 + -+ Vn
and, with probability exponentially near to one,
Tc-mul»'—l! = Zg(:—ln_ 1

The proof thus follows immediately by using Proposition 4.3(iv), the
Chebyshev inequality, and the expansion used to estimate P (G). |

Remark. We note that, if P“(x", y") is exponentially small, ie., if
the transition x”— y” is against the flow, with Theorem 5.1 we provide
estimates from below of probabilities conditioned to an event G of
exponentially small probability. This is the main difficulty of this theorem
and for this reason we used explicit expansions in the proof.
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The case P")(x", y"") = 1 is easier. Indeed the process is “falling” to y”,
and we are conditioning to an event of probability of order one. The results
proved in Theorem 5.1 can be stated in this case in the following form:

Theorem 5.2. Let x”, y"eS" be such that PU(x", y") = 1. If we
define the events

D, :={T,e~** <1< T}

D, :={Vye C. 3t <7, such that X, =y}

Dj:={X,, . € R} and starting from X,
Gi= (X =", X =y}

o> the process falls to y"}

then for any xe &%, we have
P\(D]r\Dsz3|G)>1_e_Kﬂ

for some K> 0 independent of f.
Proof. By hypothesis, P (G)=P"(x", y") = 1.

n

By Proposition 2.1, since the states in & are the most stable states
contained in Q.., we have immediately

P(DS|G)<e XF (5.13)

for some K> 0.
Since

T(Catn= 0y S Ty
by Proposition 4.3(iii) we have that
PAD5|G)<e " (5.14)

for some K> 0.
To get P(D$|G)<e % we notice that the probability that the
process, starting from X, o> visits &%, before &”,, z,€ S™, z" #y”", when

conditioned to the event G, is zero. By using Proposition 4.5 we conclude
the proof of the theorem. |

Remark. The main difference between the statements of Theorems
5.1 and 5.2 is that in Theorem 5.1 we were considering times of the form
Z"~! in order to be able to iterate the theorem itself to obtain a complete
description of the transition x” — y" in terms of the original chain X,.
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Here, in Theorem 5.2 we are considering times of the form 7,4 .,
since, as we will show in the following theorem, we will consider the itera-
tion on the stability of the state to which the process is falling. Let x*e §
and xe "

Theorem 5.3. Let B, "=x}"",., x] ™" For each of these states
x"~! there is at least a path ¢~ V(x7~ ") = {${" "} o7 in S, with
¢(n—l) n—I’ ¢(n——l)em(l}—l) P(n—l)(¢(n-l) ¢(n—|))v1 (515)

We define the following event:

E := {there exist x; "' e B’ ' and ¢~ V(x7 ")

n—1

satisfying Eq. (5.15) such that x e j’ b

xfallstox?~!', and X"~ "=¢" -V ¥s5=0,., T}
Then we have
P(E|xfallstox")>1—e *F

Proof. The proof of this theorem is an immediate consequence of
Proposition 4.5 and Lemmas 2.1 and 2.2,

6. THE TUBE OF EXIT

We come now to the problem of the determination of the tube of exit.
We will use the renormalization procedure and the results of the previous
section to define the tube of typical exiting paths in terms of a sequence of
permanence sets (see Definition 5.1).

We use the notation established in the previous sections. A generic
state in S will be denoted by x”, and a path in S will be denoted by
¢". Since in this section states of different spaces S will appear at the
same time, we do not simplify the notation by omitting indices. With
boldface letters, e.g., y, we will denote sequences of states not necessarily
belonging to the same state space.

Let Q< S be an arbitrary domain. As in Proposition 2.1, we can sub-
stitute our original chain X, with the chain X¢ defined by (2.30). Let
N=N(Q) be defined by (2.31). We omit, from now on, the superscript O,
since only the chain X2 will be considered in the rest of this section. The
characterization of the typical exit of the chain X'V from the domain

822/84/5-6-9
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0N S is an easy problem since this domain does not contain stable
states for the chain X!V and so, with large probability, the chain X {*" exits
from O~ SY' in a time of order one by following a path falling to Q°.

For any x e OnS'™Y’ we define the set of typical exiting paths
starting from x™:

P, 0 1= U (98 97 #FE SO g =", ge 0% gl e MY
Vi=1,., T—1and I{})1(¢") =0} (6.1)
By Lemma 2.2 we have the inequality
M3V e PN AN, O XM =N VIS TV > 1—e ¥ (62)

where T(¢") is the first hitting time to Q° of the path ¢*.

This can be called “N-descent to Q¢” (in the reversible case the Nth
renormalized energy function is decreasing on the paths in ¥V(x", Q“))

As noted in ref. 11, Section 2, (6.2) gives us a first knowledge about the
exit of the chain X, from the domain Q, providing, in particular, the results
obtained by Freidlin and Wentzell about the mean exit time and the most
probable exit point A first preliminary, quite rough version of the exit tube
starting in &% is thus given by the following union of paths:

Ti= U TV TY) (6.3)

¢N £ PN, Q°)

where 7 (¢", T(¢™)) is defined in (2.19).

On the other hand, each descending path ¢"e ¥V (x", O°) can be
analyzed in terms of paths of the chain XY~ ". An N-descent to Q° for the
path ¢V will be a sequence of descents and ascents for the paths on the
smaller scale N — 1.

Now we want to use the results of the previous sections to give more
details on the typical exiting paths, in order to describe these sequences of
descents and ascents up to the first (better, zeroth) level of the renormaliza-
tion procedure {corresponding to the original chain). In this way we want
to narrow the tube J as much as possible keeping a good control in
probability. This will be achieved by describing, for each path {¢}7_,
appearing in (6.3), the behavior of the original process X, on the time
intervals corresponding to each transition ¢~ — ¢%, | at level N.
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We can proceed as follows: by applying Theorem 5.1, we can associate
to each transition ¢ — ¢~ , a permanence set Q,~ and a set of paths
PWN=Din (SN deﬁned by

- N-1 N-1
T(N 1)(m( M )’ m( M ))
[ i1

— —~ — - - (N—l)
BT g e S gy e
My

Tcs

¢’}’“em“}5””,¢{““¢M‘N‘”Vt=1,..., T—1and
I 7@ =ANGY, 47, )+ V) (64)

To each transition at level N—1 we can associate, again by
Theorem 5.1, a permanence set Q- and the set of paths

‘I’”‘"”(qﬁ""l ¢ !), where, for any n<N and for any pair of states in
A ka1 WE deﬁne
(n—1) (n-l) (n—l)
¥ (m¢2 ¢A+1 )
— U {¢n—l n—l’ - n—l S(n—l) ¢n-—l L’"—'”,
o7 emy g1 ¢ MUV =1,., T~ 1 and
TG ) =4"g 97 ) + V) (6.5)

By iterating this argument we have that the transition ¢} — ¢V, is
described by a family of sequences of permanence sets, one sequence for
each choice of possible paths at each step of the iteration corresponding to
lower and lower levels of renormalization:

Q_vgo’ Q",'I'l 9eees Qy','_L

For n;=0, Q,u reduces to the single point Q,n=y{ and C,p=y!.

Let us analyze the sequences y=yg,.., yi- arising from the above
iteration.

At each step of the iteration we insert between two states of order n
a sequence of states belonging to S$*~!. For this reason we give the
following definition.

Definition 6.1. We will denote by y" a sequence of states
(y"HeS"), i=1,., T, such that n,>n, Vi=1,.., T. Given y", a sequence

822/84/5-6-10
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y"~'is called a refinement of y" and we write y*~!'ref'y" if the following
two conditions hold:

(i) y"~'is a set of states in {S""}, with n;=n—1, containing the
set y".

(ii) Tt is obtained by inserting on the r.h.s. of each element (y")}" with

n,=n a sequence y" ' of elements of S~ "' such that there exist x" ' and
X" with
¥ lemu™"  and ELSEpn)
i+l
and the sequence
—1 —1 —1 -1
{yr= "l x" e P D min

Such sequences y*~! that we add to y" in order to get y"~' will be
called the refining paths of y"~'.

Each sequence y arising from the above iterative application of
Theorem 5.1 will be a refinement of a refinement ... of a refinement of an
yN e PM(xN, 0°).

Now for any given constant >0 and for each state x"e S we
define, as in Theorem 5.1 the following events (sets of paths):

A(x"a):={¢edS): ¢y "emlt Vand Z0: " _ (T, e ! T,e”)}

Ax(x") = {dedS): ¢y Vemt "and ZU\ 21 g > Zha 1}
where

_ —1 (;x—l)
o,(n l)_ O.(H )(¢ e r

(m ¥

The first step of our iterative construction is given by the following
expression for Jy(x", Q°):
Tp(xN, Q) = U T(y™, T(y™) (6.6)
yNe wMeN g0
Then we define

fN_l(.\'N, Q‘V, (l) = U U / yN yN -t

yNe yN=1oryN
PN, 04
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where
T gn-1:i={p € Ty(x™, Q°): for each transition
¢ =(yN)i— ¢ =M
the path ¢ on the corresponding
interval of time [ Z¥, ZY, ] belongs to
A (YN, ey A((yN)) and ¢, e 7 (yN 1 Ty 1)
Vi>ZN+ZN5N )

where y ™! are the refining paths of y™ ",

By iteration

— _I\I . . T
Za o= U U o U e
yN e yN -1 ,.q/'yN V" ,.‘:"yn+l
LR RGN )

with
T st =19 €T x n-1_er: for each transition

of a refining path of
YL = (o 0 = (T
the path ¢ on the corresponding
interval of time belongs to
A (Y a) N Ax((y" D)) and ¢, € T (yy, T(yR))
Vi>ZP + Zhen_y)

where yy are the refining paths of y".
Finally we obtain

7ol XN, O, a): U U -y TN yN=1_g»

e Y lreryN ey
n]/(;\')(.\.,\". 9
= | U - U {4 visits the ordered sequence
e N lreryN o yPreryt
PN N 0
of sets Q0 and in each set Q » spends a time in
—aff i
[T,e . T,e"1} (6.7)

where we define Qw=1x%and Ty=1 if x°€ S.
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A first result on the typical exiting tube can thus be stated as follows:

Theorem 6.1. For each positive a there exists a positive constant
K such that for each sufficiently large 8 and for each x e &% we have

PX,eTy(xN, Q% a) > 1—e ™

Proof. The proof follows immediately by Theorem 5.1 if we note that

for some positive XK', K"

P(X,eT,(x", Q a))

yN c yN -1 r(fny yl|+l r‘:/'yn-O-Z
PN N o)

X P.\‘(Xle'g;('\‘”v Q(.a [I)IXIe'g-yN..._y"‘*l) PA\'(Xleg_yN---y“"”)

2(1—e *")P(X, €T, (x", O, a))

and P (X, e Ty(x", 0%, a))=1—e X" by (62). |

Let us now make some remarks on this theorem.

"

Given the sequence y=y°, consider each element y} belonging to a
portion of the sequence where n, is monotonically decreasing, i.e., such that

o1y o1 1
&6
B ¥

By construction, (6.8) implies that
n;<n;_,and Qpe Q_‘,;.,__I,
This means that the information given by the event 4, 4,

Ton =T,
Q)j 1y

can be considered as a “negligible correction” to the statement

Ty =T,

")
Then from any sequence of the form

ve U U - Uy

e WolreryN o Yrery!
WM N, 06

(6.8)

{6.9)

(6.10)

we can extract a new sequence y’' in which the terms satisfying (6.8) have

been canceled.
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Moreover, by construction, each element yj appearing in y given
by (6.10) either is in S“’\M'"" [see the definition of the sets
po(x"+1 y"+* 1], and so by applying Theorem 5.1 without losing in
probability we can also include the event 4, in the definition of our tube,
or yj is the starting point of the path starting at y7-}, i.e., (6.8) holds.

Following this remark let us extract from the sequence y sequences
{y"}; in which (6.8) holds, or, more generally, the maximal segment of y
in which there is a term of the segment such that its permanent set contains
all the permanents sets of the segment:

Definition 6.2. Let {y"}, be a maximal segment of y:

41

b=y Yo s Yorid
such that for any je[/;, m;] we have
Q_‘.}_n, S Qi forsome k;e[/;, m;]

Let y' be the sequence obtained from y by replacing each segment
{y"}; with the unique term y,*.

This means that by considering the sequence y’ instead of y, we have
canceled all the “negligible corrections” like (6.9).

Definition 6.3. Given a sequence y appearing in (6.7) and the
corresponding sequence y' obtained according to Definition 6.2, we call Q.
the standard descent outside Q emerging from x".

With Theorem 6.1 we have described in full detail our exit; however,
with the refinement procedure we have obtained at the same time two
different kinds of information. First of all, we have obtained what we call
primary information (or level-one approximation of the tube of exit): the
family of ordered sequences of different permanence sets visited by the
process (namely the set of standard descents Q) and the typical times
spent by our process inside them. The secondary information (or level-two
approximation of the tube of exit) concerns further details about the history
of the process inside each cycle that it visits when it stays inside some Q;
in Q.. It will describe the first descent to the bottom of the cycles and the
first excursion outside them.

Let us discuss in some more detail the primary and the secondary
information on the tube contained respectively in the parts y' and y” of the
sequences y appearing in Theorem 6.1.

We want to characterize the standard descents Q.. We denote by w;
the subsequences of sets in the sequence Q. coinciding with single states
and by using a simpler enumeration of the permanence sets we write

Qy' = Ql’ @, Q’l"-" Qka Wy
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Proposition 6.1. Q,,w,, @,..., O, w, is such that:
(@) ;N0 =D Vi

(b) w; are downhill paths [ie, w@=x,x,,.,Y, satisfies
4(x;,x;,,)=0, Vi=1,2,.,m] going from Q; to Q,,, in the following
sense: if ;=X |, X; 5, X;,, then Xx;, is one of the optimal exit points
(belonging to the set Y. of Proposition 3.2) of Q; and x,,,€ Q;. ;.

{c) w; goes from Q, to O°.

Proof. We know that yNe PV(xV, 04, ie., 4™ ((y™);, (¥yV),21) =0
We will iteratively prove that if 4"((y"),, (y");,1)=0, then the refining
n—1

y; ', ie, the subsequence of elements in S~ ! belonging to y between
(y"); and (y"),.,. can be divided into three parts:

(i) A first segment, say yi 7', yi ' in Q..

(ii) A second segment, say y; . . ... y;; ', downhill in B, .

(iii) The last segment y{} ..., i7" in Q-

We notice that each of these parts can be empty. The first and the last
segments consist, respectively, in the ascent outside Q. and the descent
to the bottom of Q, ., ; they will be studied later when we analyze the
secondary information. The only remaining part in our level-one analysis,
ie., in the sequence y’, is part (ii), and so the proposition follows once we
prove the iteration step.

We know, by the definition of y, that y}~' is a path going from (y");

to (y"),,, and minimizing the functional 7" ~!’. More precisely, we know
that 1"~ D(y?= Y =4"((y");, (¥"): 1)+ V,=V, and, on the other hand,
each path in S ~! exiting from m{%, " gives to the functional I'"~" a

value larger than or equal to V, and so the part of the refining path outside
Q. [the second segment ii)] must give a zero contribution to the
functional 7"=". |

Definition 6.4. Given a standard descent Q,, w,, @s,..., Or, W,
emerging from xe &%, we say that our process follows regularly Q,, @,,

Qsrees Oy, 0 1

1. It stays inside @, during a suitable random interval of time,
exponentially long in .

2. The length of this random interval of time as well as the way our
process spends its time in Q, is specified as follows: during its permanence
in Q, our process visits one or more cycles C, , belonging to Q,. When it
enters inside one of the cycles C, , it has the typical behavior described in
Propositions 3.1, 3.2, 4.3, and 4.4; in particular it visits all the points before
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exiting from a point y minimizing the quantity Wy(x, y) in (3.8); it stays
in C, , a random time logarithmically equivalent to its expectation given in
(3.10).

3. Then the process gets out of Q, following w,.
4. Subsequently it enters (0, and continues as before.

5. Finally, following w,, it gets out of Q.

Our main result about the level-one approximation is contained in the
following theorem, which immediately follows from Theorem 6.1 and
Proposition 6.1:

Theorem 6.2. With probability tending to one as f tends to
infinity, if at 1=0 our process starts from xe &%, the first exit from Q
follows regularly one of the possible descents emerging from x.

Sometimes the primary information can be completely simplified. This
happens, for instance, if Q itself is a single cycle.

In this case the primary information clearly reduces to a triviality: we
have that the descent consists only in the set Q itself and the typical point
of first exit in Q. In other words, our primary information in this case is
almost empty since it only gives us the typical random time spent in Q and
the typical point of first exit in dQ. As far as the problem of the determina-
tion of the tube of exit is concerned, in the present case only what we have
called the level-two approximation starts to be interesting.

Indeed the natural question that arises in this case concerns the typical
first excursion outside @, i.e., the path

Xows Xonersees Xepe

where

O.v=sup{t <ty X,=xy}

The level-two approximation, in particular, will characterize this first
excursion outside Q.

Let us consider the simplest case in which Q is a cycle whose bottom
is made up of a single point x". We have yN = x¥, z" for some z" e 0¢ with
A™N(xN, 2Ny =0 and

N-1_ N N-1 N—1 _N
y =xV, x{ T, xT Tz

N—-2_ N N—]1 _N=2 N-2 N—-1 _N=-2 N—-2 N—1 N-2 N
y =X XY T XN e X0 s X2 T X0 s X2 gy sy X7 5 X7 s Z
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The whole sequence y arising from the refinement procedure, except for the
final state z", satisfies the condition defining the sequences {y”};, since in
this case

Qv\'N = Q_\';" ’ Vy :"i €y

On the other hand, if we want to get information about the first excur-
sion, i.e., about the behavior of the chain in the time interval [0, 5]
(which is exponentially smaller than the time spent by the process in Q),
we are exactly interested in the “negligible corrections” contained in {y"},.
Thus we can ignore the first term x” in the sequence y, describing exactly
the long time interval spent in Q, and we can consider, as before, the
remaining sequence y\x”". Again we can extract from this a sequence
(y\x")' (see Definition 6.2) and we can apply the analysis developed up to
now to this beheaded sequence. We obtain in this way a sequence of per-
manent sets Q, .\« describing the ascent from x*" to Q~.

In the reversible case this ascent can be characterized by a sequence of
disjoint sets Q’s connected by uphill sequences ;. In the general nonrever-
sible case this result is no longer true and more and more complicated
paths w; (partially uphill and partially downhill) will appear in a standard
ascent. On the other hand, we notice that in the case of standard descents
the simple feature of the corresponding w; (only downhill paths) valid in
the reversible case is preserved in the general case, as follows from Proposi-
tion 6.1.

The procedure of beheading applied to the discussion of the case when
Q is a cycle with a single bottom x” can also be applied to describe the
segments {y}/ in the case of a general Q, i.e., to obtain the secondary
information.

Let {y"} = {»7}/_, and let k be such that

Q",Zk 2 Q',jy foreach j=/..,m

Since in each standard descent each element of y appears only once, in
each segment {y”} there is only one k satisfying the previous inclusion. We
can thus define

ydz{yj.}j=1 ..... k-1 and ynz{y}v}j=k+l ..... "

so that {y"} =y, ¥ y., where y, and y, correspond respectively to the
descent to the bottom y}* and to the ascent from y;* to Q5. For each of
these segments we can extract again the subsequences (y,)’ and (y,)".
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In other words, the level-two approximation on the tube tells us how
our process reaches for the first time the bottom of the visited cycles C;,
constituting the permanent set O\~ and how it performs its first excursion
from this bottom to Qfn. Between these relatively rapid “transients” the
system will typically spend a much (exponentially in f) longer time perfor-
ming random oscillations in C,, visiting many times all its points before
exiting. Of course for the degenerate permanence sets given by single points
the secondary information loses any sense and we have to stop our
analysis. In general we can continue our description of the tube of first exit
trajectories by specifying the level-three approximation, namely by describ-
ing the first and last transients of the history of our process when it enters
some smaller cycle. This means that each segment {y”} contained in (y,)’
and (y,)’ can again be analyzed in the same way.

Up to now we have considered a starting point x € &%. We now dis-
cuss the case of a general starting point.

For any set Q, let N = N(Q) be defined as usual [see (2.31)]. Consider
the covering of S given by the union of the generalized basins of attraction
of all the points ' e S*

S= U B

AN e sV

Given any xe Q, we look at an x'' such that x e Z(x'™). If some of those
x'*™ do not belong to Q, there are possible typical first excursions outside
Q starting from x which are just descents to x'V ¢ Q.

Suppose now that there exists at least a point x'* e §'¥ U @ such that
x e A(x™). We will show that in this case we can distinguish a first interval
of time in which the process falls to x", and a second, much longer interval
of time in which the process exits from Q following the description obtained
above, since we can now consider x" as starting point. This means that in
order to complete our description of the typical exiting tube we have to study
this first transient descent to the bottom of a basin of attraction.

More precisely, let x"e S and xe #”.. We now apply iteratively
Theorems 5.2 and 5.3 to obtain the tube of typical paths starting at x up
to the first fall to x".

The sequence of states y in this case has the following property:

(YN "o BN
and there exists x¥ ' e m‘N " such that
the path {yN=%, x¥ 1} e {§¥ 1} "M e (SN D),
I'N=D(gN =D, gV T D) =0} (6.11)

i+1
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Moreover, we can define the sequence of states arising from this itera-
tion by defining a new refining as follows:

n+1

Definition 6.5. For each n<N—1, y" is a fall-refining of y
and we write y" f-ref y"*! if y" is obtained by inserting on the Lh.s. of each
element (y"*'), a sequence of states in $'": y! such that there exist
X1 x" such that

X} e’n(':r)-i»la "n++1 c &Y (yo+ 1yl (yi )OEB(\IJ")*'
and the path
n . n (n) ny. n n n
{yt, x7} e ({8} AV e o(S™): 1™(417, ¢ 1) = 0}

As before, we can define the tube

FT{v v N - —
Jo(.\,.\ ,a)y= U U U ny_yN-l__,yo
yN-! WN=UreryN=U YYrery!
satisfying (6.11)
=Jy(x, x", a)
N-d NYoref yN-V rery!

Y
satisfying (6.11)

{¢ visits the ordered sequence of sets Q0

and in each set Q» spends a time in [ T,.e =, T, ¢”]}

Analogously to Theorem 6.1 we can prove the following result.

Theorem 6.3. For any a >0 there exists K >0 such that for any §
sufficiently large and for any xe #%

P(X,eT(x,x"))z1—e %

If

xeBW,  i=l,.,j(x)

then
J(x) .
<Xe U 7(x, x! )21—6"‘/’
i=1

By combining Theorems 6.1 and 6.3 we complete our description of the
tube of typical paths starting from each point x up to the first exit from Q.
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Indeed, if x € A%y for some xN € @, then the typical tube is just made up of
paths which are in 7 (x, x", @) up to the time t &ty and from this moment
they are in the tube F(x", 0¢, a). We call it 7 “‘(\',,\ La)o T(xXV, Q¢ a). If

xeB™, i=1,.., j(x)

'\i
then we have to consider the tube
T(x, xN, a)o 7 (xV, 0%, a) U T (x,x], a)
ie[l.....j(.\‘)]:x?’EQ le[l... j(,\‘)]:.\';veQ“

Similarly to what we did before, we can extract from the final sequence y
a sequence Yy’ and distinguish between primary and secondary information.

APPENDIX
Proof of Lemma 4.1.
The proof is organized as follows:

1. First we consider a graph g“"* and we construct a graph g on
S* -1 satisfying property 2’ of Definition 3.1 of B-graphs.
2. As a second step we extract from & a Q¢!
Stk=n. gtk
. QL—I .

3. We show that

graph on

WD < Wghl) = Wil + V10|

4. Given a graph g'5=!"*, we construct a Q*-graph on §**": ¢
5. We verify that

(k)
ok

W‘k’< W(g(k’)— W(k—_ln_ Vk Ile

From 3 and 5 we immediately obtain (4.20) and thus we can conclude
that the graph g4=!" constructed in 1 and 2 minimizes W=’ and the
graph g! constructed in 4 minimizes W)

1. By Eq. (4.19) we have that Q% ~! contains all the unstable states of
the chain X% " say S*~V\M*~" and each state in m'* ", if xe Q.
Here Q% ~' possibly contains some states in m'* ~" with x e D, but not all
of them.

For any ie Q* let m'*~! be the corresponding equivalence class in
S*%~1. Given a graph g'} 2* we can now construct a graph g of arrows
starting in states in Q"‘l as follows:

$22/84,5-6-11
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(i) To each arrow in g‘Q"'K*: i— j we associate a sequence of arrows
xk=T5 .o 5 x4~! between states in S~V such that x|~ 'em! ",
xplemF T i mte UMY and xt T — - - xf 7! is a path

minimizing 4“'(i, j) [see (2.18) and (2.9)].

(ii) For any equivalent class m'* =", ie Q% let i~ ' be a state which
is the starting point of an arrow constructed in the previous step (i). For
any other state in m'* ="’ we can construct a sequence of arrows between
points in m* =" leading to if~'. Such a sequence exists by definition of
~%=1 and for each such arrow the associated function 4~ is zero.

(iii) Since D* 7' <) e pe m'* ™", it may happen that there are stable
states in Q* ' (for the chain X ¥ ~") which were not touched by the con-
struction (i) and (ii). They must be equivalent to some state in D* ' and
we can then draw a sequence of arrows from each of them to a state in
D*~" with a zero contribution to the quantity W/(§g).

(iv) Let us now consider the states in Q' which were not touched
by the previous construction, i.e., which are not starting points of any
arrow constructed in steps (i)-(ii1). These are unstable states. In this set of
states we consider the equivalence classes with respect to the relation
~k=h k=1 For each such equivalent class, due to unstability, we can
draw an arrow emerging from a state contained in it and ending outside it
and corresponding to a zero value of the function 4", Moreover, for
each of these equivalence classes we can find a sequence of such arrows of
zero cost and leading to a state in D*~! or to a state considered in (i),
(1), or (iil) (i.e., starting point of an arrow already drawn). Inside each
equivalence class c¥ ' we can draw arrows between equivalent states as in
point (ii).

In this way we have constructed a set of arrows, say g, such that at
least one arrow emerges from each state in Q' and condition 2’ of
Definition 3.1 of a Q% ~'-graph for the chain X‘*~" is satisfied.

2. We will show now that ¢ contains a Q*~'-graph: g'§=1'. This is

a standard proof (ref. 13, Theorem 1). In fact by the previous remark we
have only to show that we can satisfy also condition 1 of Definition 3.1
of B-graphs only by removing arrows in g This can be done with the
following prescription:

(a) Introduce in the set of states $'*~"'\D*~! in an arbitrary order
X, Xp,.; S€t gog=g and i=1.

(b) Since g,_, satisfies condition 2', there is at least a sequence of
arrows in g,_, leading from x; to some point in D*~!; choose one of these
sequences; let x; — x; be its first arrow.
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(c) Define g; as the set of arrows constructed starting from g;_, by
erasing all the arrows exiting from x; different from x, — x|.

(d) Verify that g, satisfies condition 2’ and every x;, j <, is the initial
point of exactly one arrow in g;.

(e) Make i— i+ 1 and go back to point (b).
The graph

(k—1) —

goll=g, for i=10"7Y

is by definition a Q* ~'-graph included in g, since it satisfies conditions 1
and 2'.

3. By using the definition of 4%'(-, -) we have

W(Cl;ktll)\ (gQA—I))_ Z A(k—l)(i’j)s Z A'k_l)(i,j)

I—'jé‘g‘l‘,\ 1) i—=jeg
Q

< Y 4R+ Vk)=W‘Qk"')+ Vi |Q¥]

l—’jE(,‘(:‘]‘

4 Let g§=!"* be a Q* ~'-graph minimizing W-!". For each ie S’

let m'* =" be 1ts equivalent class. If m* =" A D*~! = ¢, then ie Q% and in
g‘Q" ’“* there is a unique arrow exmng from m'* =", Indeed, if there were

two arrows exiting from m'* =" in g!4=1"* we could construct a new Q* !
g
graph g'* =" by changing only arrows starting in m'* =" with

(g~ < (gt = wikh

contradicting the fact that W%=!" is the minimum.

This means that from the graph g'5—!"* we can construct a Q*-graph
on S'*' by looking, for any ie QF, at the sequence of arrows exiting from
it and at the first state in M *~ " hit by this sequence. The set of transitions
starting in states in Q* constructed in this way is a Q*-graph gi§{. since
git'* was a 9"~ "-graph.

5. We have immediately
WER<Wgih= 3 4%, ))

k)
i—je
Te8

SWgG ™) = VilQcl 1

Proof of Lemma 4.2. The proof is based on Lemma 4.1.
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For any x,eé”, let xqeS'", x3e S, ,,\ 'e S be the sequence of
renormalized states souch that xo€6', “ Vi=1,.

Let us first consider the chain at level n—l The stable states of the
chain X"~ contained i in J . osay pn = ya=1 L ye=1 are all contained in
an equivalence class m‘\" énd one of them coincides with x} ', i.e., con-

tains the point x,. If we now consider the quantity
W‘”..TH\‘., |

we 1mmed1ately obtain that it vanishes and each (B“" l’\\'”*')-graph on

S =1 minimizing this quantity has only arrows endmg inxp~h
Now, by iteratively applying Lemma4.l with k—n—l, /=
1,2,.,n—1, and

Dn-l =(B-(‘%~l)\xr(;—l)r, Dk—l — U ’”f\{\'- “\,\'g;l
xeDF

we conclude the proof of Lemma 4.2 in the case of a single state.
The proof in the case of a stable plateau p' is exactly the same. |
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